
1

Java 8 LambdaJava 8 Lambda
Expression Part 1Expression Part 1

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”

1

2

Topics

• What is and Why Lambda Expression (or simply Lambda)?

• Lambda implementation in Java

• What is Functional interface?

• Lambda expression syntax in Java 8

What is and Why What is and Why
Lambda Expression?Lambda Expression?

4

What is Lambda Expression (Lambda)?

• A formal system for “expressing computational behavior” (or
“parameterizing behavior”)
> Through functions (function objects)

• Function objects are first-class citizens
> Function object can be assigned to a variable
> Function object can be passed to a method as an argument
> Function object can be returned as a return value

• Many modern programming languages support Lambda
expression
> JavaScript, List, Scheme
> Ruby, Scala, Clojure

• Java 8 now supports Lambda expression
> Biggest language change since Generics of Java SE 5

5

Why Lambda?

• Let you declare what to do, not how to do it
> Cleaner, more concise, more expressive code
> High productivity, flexible, “fluent” style programming is possible

• Promotes immutability
> Less concurrency issues

• Enables parallel programming & lazy evaluation
> Higher performance

• Forms the basis of functional programming paradigm
> When functional programming is used, many set of problems are

easier to solve, and results in cleaner code

• Richer collection APIs possible
> Stream API
> New methods in Iterable<T>, List<T>, and Map<K,V>

Java 8 ImplementationJava 8 Implementation
of Lambda Expressionof Lambda Expression

7

Lambda: Concept vs. Implementation

• Lambda expression is a concept
> Different programming languages have different implementations

of Lambda expression
• You, as a Java developer, need to learn both

> General concept of Lambda expression and
> How Java 8 implements Lambda expression

8

Java 8 Implementation of Lambda

• In Java, a Lambda expression is implemented essentially as an
anonymous function
> A Lambda expression is considered as a instance of a functional

interface (an interface with a single abstract method)
> The type of Lambda expression is indeed that functional interface

• There is no native “function” type (unlike in other languages),
however, in Java 8 Lambda implementation
> This is a deliberate decision by Java 8 Lambda designers

9

Usage Areas of Lambda in Java Programs

• Replacement of anonymous inner class

• Event handling

• Iteration over list

• Parallel processing of collection elements at the API level

• Functional programming

• Streams

What is Functional What is Functional
Interface? Interface?

11

What is a Functional Interface (FI)?

• A regular Java interface with a single (abstract) method
> It is common in Java programs
> Sometimes called Single Abstract Method (SAM)

• Just like any other Java interface, it can be used as a reference
type (type of a variable or type of an argument)
> MyFunctionalInterface x = (x, y) -> x+y;

• Even though it is a Java interface, it represents a function
> The arguments and the body of the method represents a function
 (arguments) -> {code block}

12

FI is simply an Interface with a single method

• In fact, previous versions of Java (Java 7 and earlier versions) have
several functional interfaces already
// Runnable interface
public interface Runnable {
 public abstract void run();
}

// ActionListener interface
public interface ActionListener extends EventListener {
 public void actionPerformed(ActionEvent e);
}

// Comparator interface
public interface Comparator<T> {
 int compare(T o1, T o2);
 boolean equals(Object o); // This is not considered as an abstract method
}

13

Backward Compatibility

• Any interface with a single method is considered as a functional
interface by Java 8

• Java 8 Lambda works with old libraries that use functional
interfaces without any need to recompile or modification of them

14

@FunctionalInterface Annotation

• When used, Java 8 compiler produces an error if the interface has
more than one method - helps developers at compile time (just like
@Override annotation helps developers find at compile time
incorrect method name)

@FunctionalInterface
public interface MyInterface {
 public String myMethod();
}

// Generates Invalid @FunctionalInterface compile error
@FunctionalInterface
public interface MyInterface {
 public String myMethod();
 public String myMethod2();
}

15

Where to use Lambda Expression in Java app?

• Concept
> You use Lambda expression wherever a functional behavior is

required
• Java app

> You can use Lambda expression in any place where the functional
interface type is expected

• Examples
> You can assign a lambda expression to a variable whose type is a

functional interface
> You can pass a lambda expression to a method as an argument

whose type is a functional interface

16

Example #1: Variable is functional interface type

• Let's say we have a functional interface
@FunctionalInterface
public interface Calculator {
 int calculate(int x, int y);
}

• A variable whose type is a functional interface can be assigned with a
lambda expression
Calculator multiply = (x,y) -> x*y;
Calculator divide = (x,y) ->x/y;
int product = multiply.calculate(50,10);
int quotient = divide.calculate(50,10);

17

Example #2: An argument is functional interface

• Let's say we have a functional interface (same as in prev. slide)
@FunctionalInterface
public interface Calculator {
 int calculate(int x, int y);
}

• Types of arguments are functional interface
public static void myMethod(Calculator m, Calculator d){
 int product = m.calculate(60, 10);
 int quotient = d.calculate(60, 10);
 System.out.println("product = " + product + " quotient = " + quotient);
}

• Pass lambda expressions as arguments of a method
myMethod((x,y)->x+y, (x,y)->x/y);

18

Lab:Lab:

Exercise 1: Functional Interface Exercise 1: Functional Interface
1611_javase8_lambda_syntax.zip1611_javase8_lambda_syntax.zip

Anonymous Inner ClassAnonymous Inner Class
Replaced by LambdaReplaced by Lambda

20

Anonymous Inner Class and Lambda

• Given that typical usage of anonymous inner class is an example of
an argument whose type is a functional interface, you can now
replace it with a Lambda expression
> In Java programs (of pre-Java 8 versions), anonymous inner class

has been used as a kludge solution for passing a functional
behavior (before Lambda is available in Java 8)

• The current code what uses Anonymous Inner class can be
simplified through the usage of Lambda
> Just take the arguments and code block with following Lambda

syntax removing everything else
 (arguments) -> {code block}

21

Example #1: Runnable

• Anonymous Runnable replaced by Lambda

// Anonymous Runnable
Runnable r1 = new Runnable() {
 @Override
 public void run() {
 System.out.println("Hello world one!");
 }
};
r1.run();

// Lambda Runnable
Runnable r2 = () -> System.out.println("Hello world two!");
r2.run();

Just take the arguments
and body to make
lambda expression

22

Example #2: ActionListener

• Anonymous ActionListener replaced by Lambda

// Anonymous ActionListener
testButton1.addActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent event) {
 System.out.println("Click Detected by Anonymous Listener");
 }
});

// Lambda ActionListener
testButton2.addActionListener(event -> System.out.println("Click Detected by Lambda
Listener"));

Just take arguments
and body to make
lambda expression

23

Example #3: Comparator

• Anonymous Comparator replaced by Lambda

// Anonymous Comparator
Collections.sort(personList, new Comparator<Person>(){
 public int compare(Person p1, Person p2){
 return p1.getSurName().compareTo(p2.getSurName());
 }
});

// Lambda Comparator
Collections.sort(personList, (Person p1, Person p2) →
 p1.getSurName().compareTo(p2.getSurName()));

Just take arguments
and body to make
lambda expression

24

Lab:Lab:

Exercise 2: Rewriting AnonymousExercise 2: Rewriting Anonymous
Inner Class with Lambda Expression Inner Class with Lambda Expression

1611_javase8_lambda_syntax.zip1611_javase8_lambda_syntax.zip

Lambda Expression Lambda Expression
Syntax in JavaSyntax in Java

26

Lambda Expression Syntax

• General syntax
> (argument list) -> { code block}

• Syntax can be simplified in the following ways
> #1: Type inferencing for the arguments
> #2: Omitting parentheses for a single argument
> #3: When a body has only a single expression - (1) no need to use

return, (2) no need to use semi-colon, (3) no need to use curly braces
{..}

27

#1: Type inferencing for the arguments

• Types in argument list can be omitted
> Java compiler already knows the types of the arguments from the

single method signature of the functional interface of the lambda
expression

// Instead of this
(String myArg1, Integer myArg2) → {... }

// You can do this because types of the arguments can be inferred by the compiler
(myArg1, myArg2) → {… }

28

#2: Single argument with no ()

• If there is a single argument, parentheses () are optional

// Instead of this
(myArg1) → {... }

// You can do this because there is a single argument
myArg1 → {… }

29

#3: When body has only a single expression

• When the body (code block) has only a single expression, the value
of the expression automatically becomes a return value
> No need to specify return statement
> No need to use semi-colon at the end
> No need to enclose the expression with { }

• If the body has multi-line code, then no simplification is allowed

// Instead of this
(myArg1, myArg2) → { return (someExpression); }

// You can do this because the body has only a single expression
(myArg1, myArg2) → someExpression

30

Simplification Examples of Lambda Expression

(int x, int y) -> { return x+y;}
 (x,y) -> { return x+y;}
 (x,y) -> x+y
 x -> x*2

() -> System.out.println(“Hello, world!”)

x -> { System.out.println(x);
 System.out.println(x*2);
 return x*2; }

You have to use curly braces { }
and use return statement because

there are multiple statements

31

Lab:Lab:

Exercise 3: Lambda Expression SyntaxExercise 3: Lambda Expression Syntax
Simplification Simplification

1611_javase8_lambda_syntax.zip1611_javase8_lambda_syntax.zip

32

 Code with Passion!Code with Passion!
JPassion.comJPassion.com

32

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

