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Topics

• What is and Why Lambda Expression (or simply Lambda)?

• Lambda implementation in Java

• What is Functional interface?

• Lambda expression syntax in Java 8



What is and Why What is and Why 
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What is Lambda Expression (Lambda)?

• A formal system for “expressing computational behavior” (or 
“parameterizing behavior”)
> Through functions (function objects)

• Function objects are first-class citizens
> Function object can be assigned to a variable
> Function object can be passed to a method as an argument
> Function object can be returned as a return value

• Many modern programming languages support Lambda 
expression
> JavaScript, List, Scheme
> Ruby, Scala, Clojure

• Java 8 now supports Lambda expression
> Biggest language change since Generics of Java SE 5
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Why Lambda?

• Let you declare what to do, not how to do it
> Cleaner, more concise, more expressive code
> High productivity, flexible, “fluent” style programming is possible

• Promotes immutability
> Less concurrency issues

• Enables parallel programming & lazy evaluation
> Higher performance

• Forms the basis of functional programming paradigm
> When functional programming is used, many set of problems are 

easier to solve, and results in cleaner code

• Richer collection APIs possible
> Stream API 
> New methods in Iterable<T>, List<T>, and Map<K,V>



Java 8 ImplementationJava 8 Implementation
of Lambda Expressionof Lambda Expression
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Lambda: Concept vs. Implementation

• Lambda expression is a concept
> Different programming languages have different implementations 

of Lambda expression
• You, as a Java developer, need to learn both

> General concept of Lambda expression and
> How Java 8 implements Lambda expression
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Java 8 Implementation of Lambda

• In Java, a Lambda expression is implemented essentially as an 
anonymous function
> A Lambda expression is considered as a instance of a functional 

interface (an interface with a single abstract method)
> The type of Lambda expression is indeed that functional interface

• There is no native “function” type (unlike in other languages), 
however, in Java 8 Lambda implementation
> This is a deliberate decision by Java 8 Lambda designers 
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Usage Areas of Lambda in Java Programs

• Replacement of anonymous inner class

• Event handling

• Iteration over list

• Parallel processing of collection elements at the API level

• Functional programming

• Streams



What is Functional What is Functional 
Interface? Interface? 
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What is a Functional Interface (FI)?

• A regular Java interface with a single (abstract) method
> It is common in Java programs
> Sometimes called Single Abstract Method (SAM)

• Just like any other Java interface, it can be used as a reference 
type (type of a variable or type of an argument)
> MyFunctionalInterface x = (x, y) -> x+y;

• Even though it is a Java interface, it represents a function
> The arguments and the body of the method represents a function
    (arguments) -> {code block}
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FI is simply an Interface with a single method

• In fact, previous versions of Java (Java 7 and earlier versions) have 
several functional interfaces already
// Runnable interface
public interface Runnable {
    public abstract void run();
}

// ActionListener interface
public interface ActionListener extends EventListener {
    public void actionPerformed(ActionEvent e);
}

// Comparator interface
public interface Comparator<T> {
    int compare(T o1, T o2);
    boolean equals(Object o);  // This is not considered as an abstract method
}
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Backward Compatibility

• Any interface with a single method is considered as a functional 
interface by Java 8 

• Java 8 Lambda works with old libraries that use functional 
interfaces without any need to recompile or modification of them
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@FunctionalInterface Annotation

• When used, Java 8 compiler produces an error if the interface has 
more than one method - helps developers at compile time (just like 
@Override annotation helps developers find at compile time 
incorrect method name )

@FunctionalInterface
public interface MyInterface {
    public String  myMethod();
}

// Generates Invalid @FunctionalInterface compile error 
@FunctionalInterface
public interface MyInterface {
    public String  myMethod();
    public String  myMethod2();
}
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Where to use Lambda Expression in Java app?

• Concept
> You use Lambda expression wherever a functional behavior is 

required
• Java app

> You can use Lambda expression in any place where the functional 
interface type is expected

• Examples
> You can assign a lambda expression to a variable whose type is a 

functional interface
> You can pass a lambda expression to a method as an argument 

whose type is a functional interface
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Example #1: Variable is functional interface type 

• Let's say we have a functional interface
@FunctionalInterface
public interface Calculator {
   int calculate(int x, int y);
}

• A variable whose type is a functional interface can be assigned with a 
lambda expression
Calculator multiply = (x,y) -> x*y;
Calculator divide = (x,y) ->x/y;
int product = multiply.calculate(50,10);
int quotient = divide.calculate(50,10);
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Example #2: An argument is functional interface

• Let's say we have a functional interface (same as in prev. slide)
@FunctionalInterface
public interface Calculator {
   int calculate(int x, int y);
}

• Types of arguments are functional interface
public static void myMethod(Calculator m, Calculator d){
    int product = m.calculate(60, 10);
    int quotient = d.calculate(60, 10);
    System.out.println("product = " + product + " quotient = " + quotient);
}

• Pass lambda expressions as arguments of a method
myMethod((x,y)->x+y, (x,y)->x/y);
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Lab:Lab:

Exercise 1: Functional Interface Exercise 1: Functional Interface 
1611_javase8_lambda_syntax.zip1611_javase8_lambda_syntax.zip



Anonymous Inner ClassAnonymous Inner Class
Replaced by LambdaReplaced by Lambda
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Anonymous Inner Class and Lambda 

• Given that typical usage of anonymous inner class is an example of 
an argument whose type is a functional interface, you can now 
replace it with a Lambda expression
> In Java programs (of pre-Java 8 versions), anonymous inner class 

has been used as a kludge solution for passing a functional 
behavior (before Lambda is available in Java 8)

• The current code what uses Anonymous Inner class can be  
simplified through the usage of Lambda
> Just take the arguments and code block with following Lambda 

syntax removing everything else
    (arguments) -> {code block}
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Example #1: Runnable

• Anonymous Runnable replaced by Lambda

// Anonymous Runnable
Runnable r1 = new Runnable() {
     @Override
     public void run() {
          System.out.println("Hello world one!");
     }
};
r1.run();

// Lambda Runnable
Runnable r2 = () -> System.out.println("Hello world two!");
r2.run();

Just take the arguments
and body to make
lambda expression
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Example #2: ActionListener

• Anonymous ActionListener replaced by Lambda

// Anonymous ActionListener
testButton1.addActionListener(new ActionListener() {
    @Override
    public void actionPerformed(ActionEvent event) {
        System.out.println("Click Detected by Anonymous Listener");
    }
});

// Lambda ActionListener
testButton2.addActionListener(event -> System.out.println("Click Detected by Lambda 
Listener"));

Just take arguments
and body to make
lambda expression
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Example #3: Comparator

• Anonymous Comparator replaced by Lambda

// Anonymous Comparator
Collections.sort(personList, new Comparator<Person>(){
  public int compare(Person p1, Person p2){
    return p1.getSurName().compareTo(p2.getSurName());
  }
});

// Lambda Comparator
Collections.sort(personList, (Person p1, Person p2) →
                                             p1.getSurName().compareTo(p2.getSurName()));

Just take arguments
and body to make
lambda expression
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Lab:Lab:

Exercise 2: Rewriting AnonymousExercise 2: Rewriting Anonymous
Inner Class with Lambda Expression Inner Class with Lambda Expression 

1611_javase8_lambda_syntax.zip1611_javase8_lambda_syntax.zip



Lambda Expression Lambda Expression 
Syntax in JavaSyntax in Java
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Lambda Expression Syntax

• General syntax
> (argument list) -> { code block}

• Syntax can be simplified in the following ways
> #1: Type inferencing for the arguments
> #2: Omitting parentheses for a single argument
> #3: When a body has only a single expression -  (1) no need to use 

return, (2) no need to use semi-colon, (3) no need to use curly braces 
{..}
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#1: Type inferencing for the arguments

• Types in argument list can be omitted
> Java compiler already knows the types of the arguments from the 

single method signature of the functional interface of the lambda 
expression

// Instead of this
(String myArg1, Integer myArg2) → {... }

// You can do this because types of the arguments can be inferred by the compiler
(myArg1, myArg2) → {… }
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#2: Single argument with no ( )

• If there is a single argument, parentheses ( ) are optional

// Instead of this
(myArg1) → {... }

// You can do this because there is a single argument
myArg1 → {… }
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#3: When body has only a single expression

• When the body (code block) has only a single expression, the value 
of the expression automatically becomes a return value
> No need to specify return statement
> No need to use semi-colon at the end
> No need to enclose the expression with {  }

• If the body has multi-line code, then no simplification is allowed

// Instead of this
(myArg1, myArg2)  → { return (someExpression); }

// You can do this because the body has only a single expression
(myArg1, myArg2)  → someExpression



30

Simplification Examples of Lambda Expression

(int x, int y) -> { return x+y;}
          (x,y) -> { return x+y;}
          (x,y) -> x+y
              x  -> x*2

() ->  System.out.println(“Hello, world!”)

x -> { System.out.println(x); 
         System.out.println(x*2);
         return x*2; }

You have to use curly braces { }
and use return statement because

there are multiple statements
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Lab:Lab:

Exercise 3: Lambda Expression SyntaxExercise 3: Lambda Expression Syntax
Simplification Simplification 

1611_javase8_lambda_syntax.zip1611_javase8_lambda_syntax.zip
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      Code with Passion!Code with Passion!
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