
1

Maven IMaven I
(Maven Basics)(Maven Basics)

Sang ShinSang Shin
www.JPassion.comwww.JPassion.com

““Learn with Passion”Learn with Passion”

2

Topics
• What is Maven?
• Maven installation
• Creating “helloworld” Maven project
• POM
• Archetype
• Plugins and goals
• Lifecycles and phases
• Repositories
• Dependency management
• Maven Web Project structure
• Maven vs. Ant

3

Topics covered in “Maven Advanced”

• Multi-module project
• Grouping Dependencies
• POM inheritance
• Profiles
• Dependency management
• Site generation

4

What is Maven?What is Maven?

5

What is Maven?

• Software project management tool
> It is more than a build tool

• Project Object Model (POM) based - pom.xml
> pom.xml maintains project's build, reporting and documentation
> POM can be inherited between parent and child project

• Based on “Convention over configuration” principle
> Minimum configuration is needed

• You specify “what needs to be done”
> Not “how it needs to be done”

• Plug-in architecture
> Vibrant Maven Eco-system

6

Maven's Objectives

• Making the build process easy
> Why do we have to waste so much time maintaining the build?

• Providing a uniform build system
> Why each developer has to maintain their own build environment?

• Providing quality project information
> Why do we have to do extra work to get project info?

• Providing guidelines for best practices development
> How can we capture best practices?

• Allowing transparent migration to new features
> How can tool vendors to do their innovation without affecting my

build?

7

Providing Quality Project Information

• Maven provides plenty of useful project information that is in
part taken from your POM and in part generated from your
project's sources.
> Change log document created directly from source control
> Cross referenced sources
> Mailing lists
> Dependency list
> Unit test reports including coverage
> Many more (through plug-ins)

8

Maven Features (1)

• Simple project setup that follows best practices - get a new
project or module started in seconds

• Consistent usage across all projects means no ramp up
time for new developers coming onto a project

• Superior dependency management including automatic
updating, transitive dependencies

• Able to easily work with multiple projects at the same time

9

Maven Features (2)

• A large and growing repository of libraries and metadata to
use out of the box, and arrangements in place with the
largest Open Source projects for real-time availability of
their latest releases

• Extensible, with the ability to easily write plugins in Java or
scripting languages

• Instant access to new features with little or no extra
configuration

10

Maven InstallationMaven Installation

11

Installation is simple

• Download it and unzip it
> http://maven.apache.org/download.html

• Make sure JAVA_HOME environment variable is set to JDK
directory

• Add it to the PATH environment variable
> Linux
export MAVEN_HOME=/home/sang/apache-maven-3.0.1

export PATH=$PATH:$MAVEN_HOME/bin

> Windows
set M2_HOME=:\Program Files\apache-maven-3.0.1

set PATH=%PATH%;%M2_HOME%\bin

12

Creating “Helloworld” Creating “Helloworld”
Maven Project Maven Project

13

Steps to create a simple project

• mvn archetype:generate
> Asking Maven to generate a Maven project

• You will be prompted to provide the following info.
> Archetype (project type)
> Group Id
> Artifact Id
> Version
> Package

• End result
> Project directory structure (for a chosen archetype)
> pom.xml

14

Maven Created pom.xml

15

Maven Created Directory Structure
(for maven-archetype-quickstart)

• <name of the project>
> src/

> main/java/
– com/javapassion/examples

> test/java/
– com/javapassion/examples

16

Lab:Lab:

Exercise 1: Create a simple Exercise 1: Create a simple
Maven Project at the commandlineMaven Project at the commandline

Step 1-3 Step 1-3
5072_tools_maven.zip5072_tools_maven.zip

17

pom.xml pom.xml
(POM file)(POM file)

18

What is POM file?

• Contains project information such as
> What type of project?
> What is the project's name?
> What is the project's identity (coordinates)?
> What are the build customizations?
> What are the dependencies?
> What plug-ins are used?

19

POM file (Simplest version)
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.javapassion.examples</groupId>
 <artifactId>helloworld_app</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>helloworld_app</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

20

Project Identity (Artifact Identity)

• Everything in Maven world is a project and every project
has a unique identity

• Project identity is specified by project “coordinates”
> Consider it as an address for a specific point in “space”
> Uniquely identifies a project in repositories

• Dependencies and parent references are described with
their own project coordinates

• Created with the combination of the following

 <groupId>com.javapassion.examples</groupId>
 <artifactId>helloworld_app</artifactId>
 <version>1.0-SNAPSHOT</version>

21

Project Identity

• groupId
> Typically represents an organization
> Convention is using reverse domain name
> Example: com.javapassion.examples

• artifactId
> A unique identifier under groupId

• version
> A specific version of a project

22

ArchetypeArchetype

23

What is Archetype?

• “Archetype” is “an original model or type after which other
similar things can be patterned or prototyped”
> Can be thought of a project template

• Captures the best practices
> Directory structure, dependencies, plugin's needed

• There are many archetypes already provided by Maven
community
> Simple Java SE app
> Spring app
> Hibernate app
> JSF app
> Java EE 6 app
> Many more

24

User-specific User-specific
configuration &configuration &
Local repositoryLocal repository

25

User specific configuration and
Local Repository
• <Home_directory>/.m2/settings.xml

> Contains user specific configuration for authentication,
repositories, and other information to customize the behavior of
Maven

• <Home_directory>/.m2/repository
> Local Maven repository
> Stores locally generated artifacts (jar files, war files, etc.)
> Stores copies of dependencies downloaded from remote

repositories

26

<Home_directory>/.m2/repository

27

Maven Lifecycle & Maven Lifecycle &
PhasesPhases

28

Build Lifecycle Basics

• Maven is based around the central concept of a build
lifecycle
> What this means is that the process for building and distributing a

particular artifact (project) is clearly defined.
> For the person building a project, this means that it is only

necessary to learn a small set of commands to build any Maven
project, and the POM will ensure they get the results they desired.

• There are three built-in build lifecycles:
> default - handles your project build/test/deployment
> clean – handles project cleaning
> site - handles the creation of your project's site documentation.

29

Phases of Build Lifecycle

• Each of these build lifecycles is defined by a different list of
build phases, wherein a build phase represents a stage in
the lifecycle.

30

“Default” Lifecycle's Build Phases
• validate - validate the project is correct and all necessary information is

available
• compile - compile the source code of the project
• test - test the compiled source code using a suitable unit testing framework.

These tests should not require the code be packaged or deployed
• package - take the compiled code and package it in its distributable format,

such as a JAR or a WAR file
• integration-test - process and deploy the package if necessary into an

environment where integration tests can be run
• verify - run any checks to verify the package is valid and meets quality

criteria
• install - install the package into the local repository, for use as a dependency

in other projects locally
• deploy - done in an integration or release environment, copies the final

package to the remote repository for sharing with other developers and
projects.

31

Build Lifecycle Basics

• These build phases are executed sequentially to complete
the lifecycle

• mvn compile
> All the phases up to compile phase will be executed in sequence

• mvn test
> All the phases up to test phase will be executed in sequence

• mvn install
> All the phases up to install phase will be executed in sequence

• mvn integration-test
> All the phases up to integration-test phase (validate, compile,

package, etc.) will be executed in sequence

32

“Clean” Lifecycle's Phases
• pre-clean - executes processes needed prior to the actual project cleaning
• clean - remove all files generated by the previous build
• post-clean - executes processes needed to finalize the project cleaning

33

Phases and Goals

• Plugin goals can be attached to a lifecycle phase

• As Maven moves through the phases in a lifecycle, it will
execute the goals attached to each particular phase
> Each phase may have zero or more goals (of various plugins)

bound to it

34

Lab:Lab:

Exercise 1: Create a simple Exercise 1: Create a simple
Maven Project at the commandlineMaven Project at the commandline

Step 4-6 Step 4-6
5072_tools_maven.zip5072_tools_maven.zip

35

Maven RepositoriesMaven Repositories

36

What is a Repository?

• Maintains plugins and artifacts
> The plugins and artifacts are retrieved from the remote repository

as needed basis

• Default remote repositories maintain public plugins and
artifacts
> http://repo1.maven.org/maven2
> Called “Maven Central”

• Custom repositories can be set up to maintain non-public
plugins and artifacts
> The default remote repositories can to be replaced or augmented

with references to custom repositories

37

Repository Structure

• Each artifact is maintained in a directory structure that
matches a project coordinates
> /<groupId>/<artifactId>/<version>/<artifactId>-

<version>.<packaging>

• Example
> “org.apache.commons:commons-email:1.1” (artifact)
> “/org/apache/commons/commons-emai/1.1/commons-email-

1.1.jar” (directory path)
> junit:junit:3.8.1 is available as /junit/junit/3.8.1/junit-3.8.1.jar

• Maven can easily locate the artifact in a repository (local and remote)
based on artifact coordinates

38

Maven Central

39

Lab:Lab:

Maven Central DemoMaven Central Demo
http://search.maven.org/#browse|47http://search.maven.org/#browse|47

40

Plugins and GoalsPlugins and Goals

41

Plugin Architecture

• Maven is based on Plugin architecture
> All Maven tasks are performed through plugins

• Maven core is basically a shell
> It parses a POM file and figures out which plugins are needed and

then download them

• Plugins are downloaded, like dependencies are
downlaoded, from remote repositories as needed basis and
updated periodically
> A plugin is a Maven project and has its own identity (coordinates)
> A downloaded plugin is then maintained in the local repository

42

What is Maven Plugin?

• A Maven plugin is a collection of one or more goals

• Examples of “ready-to-use” plugins
> Archetype plugin - contains goals for creating Maven projects
> Jar plugin - contains goals for creating JAR files
> Compiler plugin - contains goals for compiling source code and

unit tests
> Hibernate3 plugin - contains goals for integration with the

Hibernate library
> JRuby plugin - contains goals for executing JRuby as part of

Maven build

43

Custom Plugin

• You can create a custom plugin

• A custom plugin can be written in many languages
> Java, Groovy, Ant, Ruby, etc

44

Benefits of Plugin Architecture

• Common plugin used by everyone to every project
> Everyone understands what the plugin does - no need to relearn

• Plugin can evolve/improve without breaking other parts of
the build

• Change/improvement in a plugin (by community) benefit
everyone

45

What is Maven Goal?

• Goal is a unit of task
> Same as “target” in Ant

• Example goals
> “generate” goal of the “archetype” plugin
> “compile” goal of the “compiler” plugin
> “test” goal of the “surefire” plugin

46

Plugins Can be Configured

• Plugins can be configured via configuration properties

• Example - Use JDK 1.6 for Compiler plugin
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 </plugins>
</build>

47

Example: Make Executable Jar Plug-in

<build>
 <plugins>
 <plugin>

 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <archive>
 <manifest>
 <addClasspath>true</addClasspath>
 <mainClass>com.javapassion.examples.App
 </mainClass>
 </manifest>
 </archive>
 </configuration>

 </plugin>
 </plugins>
</build>

48

Lab:Lab:

Exercise 2: Use a “Make Executable Jar”Exercise 2: Use a “Make Executable Jar”
Plugin Plugin

5072_tools_maven.zip5072_tools_maven.zip

49

Dependency Dependency
ManagementManagement

50

How Dependency is Specified

• Each dependency is specified using the coordinates
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-
v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.javapassion.examples</groupId>
 <artifactId>helloworld_app</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>helloworld_app</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

51

Transitive Dependencies

• Usage scenario
> Your project has depends on a library A
> Library A depends on 5 other libraries - B,C,D,E,F

• Your project need to specify dependency only on A
> Maven will handle the fact that A depends on B,C,D,E,F

• Maven also handles the conflict between dependencies
• You can see the dependency tree through Maven command

> mvn dependency:tree

52

mvn dependency:tree

53

Dependency Scope

• Each dependency is specified with a scope
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-
v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.javapassion.examples</groupId>
 <artifactId>helloworld_app</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>helloworld_app</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

54

Dependency Scope Example

• When a dependency has a scope of “test”, it will not be
available to the “compile” goal of the Compiler plugin

• It will be added to the classpath for only the
“compiler:testCompile” and “surefire:test” goals

55

Dependency Scope (1)

• compile
> Default scope, used if none is specified.

• provided
> Much like compile, but indicates you expect the JDK or a container

to provide the dependency at runtime.
> For example, when building a web application, you would set the

dependency on the Servlet API and related Java EE APIs to scope
provided because the web container provides those classes.

> This scope is only available on the compilation and test classpath,
and is not transitive.

• runtime
> The dependency is not required for compilation, but is for

execution. It is in the runtime and test classpaths, but not the
compile classpath.

56

Dependency Scopes (2)

• test
> Dependency is not required for normal use of the application, and

is only available for the test compilation and execution phases.

• system
> Similar to provided except that you have to provide the JAR which

contains it explicitly. The artifact is always available and is not
looked up in a repository.

• import (only available in Maven 2.0.9 or later)
> Only used on a dependency of type pom in the

<dependencyManagement> section

57

Packaging of Dependencies

• When you create a JAR for a project
> Dependencies are not bundled with the generated artifact - they

are used only for compilation

• When you create a WAR/EAR file
> You can configure POM so that dependencies are bundled with

the generated artifact
> You can also configure to exclude certain dependencies using

“provided” scope - a dependency is needed for compilation but
should be not be bundled

58

Lab:Lab:

Exercise 3: Add Log4J DependencyExercise 3: Add Log4J Dependency
5072_tools_maven.zip5072_tools_maven.zip

59

Maven Support in IDE'sMaven Support in IDE's

60

Maven Support

• Each IDE uses its own proprietary project metadata
> Results in IDE lock-in

• Maven standardized project metadata
> Developer can use whatever IDE of his/her choice on any Maven

projects

• All major IDE's (Eclipse, NetBeans, Intellij IDEA, etc)
support Maven
> Create a Maven project, Import a Maven project
> Extras: form-based POM editor

• Tight integration with other IDE build tools
> Version management
> Task management

61

Lab:Lab:

Exercise 5: Import a Maven Project into EclipseExercise 5: Import a Maven Project into Eclipse
5072_tools_maven.zip5072_tools_maven.zip

62

Maven Web ProjectMaven Web Project
StructureStructure

63

Maven Web Project Structure

• /src/main/java - source files for the dynamic content of the
application

• /src/test/java - source files for unit tests

• /src/main/webapp - files for creating a valid web application,
e.g. “web.xml“, view pages, etc

• /target - compiled and packaged deliverable
• pom.xml

64

Lab:Lab:

Exercise 7: Create a simple MavenExercise 7: Create a simple Maven
Web Project using EclipseWeb Project using Eclipse

5072_tools_maven.zip5072_tools_maven.zip

65

Comparison to AntComparison to Ant

66

Example: Ant
<project name="my-project" default="dist" basedir=".">
 <description>
 simple example build file
 </description>
 <!-- set global properties for this build -->
 <property name="src" location="src/main/java"/>
 <property name="build" location="target/classes"/>
 <property name="dist" location="target"/>

 <target name="init">
 <!-- Create the time stamp -->
 <tstamp/>
 <!-- Create the build directory structure used by compile -->
 <mkdir dir="${build}"/>
 </target>

 <target name="compile" depends="init"
 description="compile the source " >
 <!-- Compile the java code from ${src} into ${build} -->
 <javac srcdir="${src}" destdir="${build}"/>
 </target>

 <target name="dist" depends="compile"
 description="generate the distribution" >
 <!-- Create the distribution directory -->
 <mkdir dir="${dist}/lib"/>

 <!-- Put everything in ${build} into the MyProject-${DSTAMP}.jar file -->
 <jar jarfile="${dist}/lib/MyProject-${DSTAMP}.jar" basedir="${build}"/>
 </target>

 <target name="clean"
 description="clean up" >
 <!-- Delete the ${build} and ${dist} directory trees -->
 <delete dir="${build}"/>

 <delete dir="${dist}"/>
 </target>
</project>

67

Ant vs. Maven

• Ant
> It doesn't have formal conventions like a common project directory

structure or default behavior. You have to tell Ant exactly where to
find the source and where to put the output.

> It is procedural. You have to tell Ant exactly what to do and when
to do it. You have to tell it to compile, then copy, then compress.

> It doesn't have a lifecycle. You have to define goals and goal
dependencies. You have to attach a sequence of tasks to each
goal manually.

68

Example: Maven
<project>

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.sonatype.mavenbook</groupId>

 <artifactId>my-project</artifactId>

 <version>1.0</version>

</project>

69

Ant vs. Maven

• Maven
> It has conventions. It knows where your source code is because

you followed the convention. Maven's Compiler plugin puts the
bytecode in target/classes, and it produces a JAR file in target.

> It is declarative. All you had to do is to create a pom.xml file and
put your source in the default directory. Maven takes care of the
rest.

> It has a lifecycle which gets invoked when you executes mvn
install. This command told Maven to execute a series of sequential
lifecycle phases until it reaches the install lifecycle phase. As a
side-effect of this journey through the lifecycle, Maven executes a
number of default plugin goals which did things like compile and
create a JAR.

70

 Learn with Passion!Learn with Passion!
JPassion.comJPassion.com

70

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

