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Topics
• What is Maven?
• Maven installation
• Creating “helloworld” Maven project
• POM
• Archetype
• Plugins and goals
• Lifecycles and phases
• Repositories
• Dependency management
• Maven Web Project structure
• Maven vs. Ant
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Topics covered in “Maven Advanced”

• Multi-module project
• Grouping Dependencies
• POM inheritance
• Profiles
• Dependency management
• Site generation
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What is Maven?What is Maven?
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What is Maven?

• Software project management tool 
> It is more than a build tool

• Project Object Model (POM) based - pom.xml
> pom.xml maintains project's build, reporting and documentation 
> POM can be inherited between parent and child project 

• Based on “Convention over configuration” principle
> Minimum configuration is needed

• You specify “what needs to be done”
> Not “how it needs to be done”

• Plug-in architecture
> Vibrant Maven Eco-system
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Maven's Objectives

• Making the build process easy
> Why do we have to waste so much time maintaining the build?

• Providing a uniform build system
> Why each developer has to maintain their own build environment?

• Providing quality project information
> Why do we have to do extra work to get project info?

• Providing guidelines for best practices development
> How can we capture best practices?

• Allowing transparent migration to new features
> How can tool vendors to do their innovation without affecting my 

build?
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Providing Quality Project Information

• Maven provides plenty of useful project information that is in 
part taken from your POM and in part generated from your 
project's sources. 
> Change log document created directly from source control
> Cross referenced sources
> Mailing lists
> Dependency list
> Unit test reports including coverage
> Many more (through plug-ins)
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Maven Features (1)

• Simple project setup that follows best practices - get a new 
project or module started in seconds

• Consistent usage across all projects means no ramp up 
time for new developers coming onto a project

• Superior dependency management including automatic 
updating, transitive dependencies

• Able to easily work with multiple projects at the same time
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Maven Features (2)

• A large and growing repository of libraries and metadata to 
use out of the box, and arrangements in place with the 
largest Open Source projects for real-time availability of 
their latest releases

• Extensible, with the ability to easily write plugins in Java or 
scripting languages

• Instant access to new features with little or no extra 
configuration
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Maven InstallationMaven Installation
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Installation is simple

• Download it and unzip it
> http://maven.apache.org/download.html

• Make sure JAVA_HOME environment variable is set to JDK 
directory

• Add it to the PATH environment variable 
> Linux
export MAVEN_HOME=/home/sang/apache-maven-3.0.1

export PATH=$PATH:$MAVEN_HOME/bin

> Windows
set M2_HOME=:\Program Files\apache-maven-3.0.1

set PATH=%PATH%;%M2_HOME%\bin
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Creating “Helloworld” Creating “Helloworld” 
Maven Project Maven Project 
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Steps to create a simple project

• mvn archetype:generate
> Asking Maven to generate a Maven project

• You will be prompted to provide the following info.
> Archetype (project type)
> Group Id
> Artifact Id
> Version
> Package

• End result
> Project directory structure (for a chosen archetype)
> pom.xml
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Maven Created pom.xml
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Maven Created Directory Structure
(for maven-archetype-quickstart) 

• <name of the project>
> src/

> main/java/
– com/javapassion/examples

> test/java/
– com/javapassion/examples
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Lab:Lab:

Exercise 1: Create a simple Exercise 1: Create a simple 
Maven Project at the commandlineMaven Project at the commandline

Step 1-3 Step 1-3 
5072_tools_maven.zip5072_tools_maven.zip
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pom.xml pom.xml 
(POM file)(POM file)
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What is POM file?

• Contains project information such as
> What type of project?
> What is the project's name?
> What is the project's identity (coordinates)?
> What are the build customizations?
> What are the dependencies?
> What plug-ins are used?
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POM file (Simplest version)
<project xmlns="http://maven.apache.org/POM/4.0.0" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 
http://maven.apache.org/maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>com.javapassion.examples</groupId>
  <artifactId>helloworld_app</artifactId>
  <packaging>jar</packaging>
  <version>1.0-SNAPSHOT</version>
  <name>helloworld_app</name>
  <url>http://maven.apache.org</url>
  <dependencies>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>3.8.1</version>
      <scope>test</scope>
    </dependency>
  </dependencies>
</project>
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Project Identity (Artifact Identity) 

• Everything in Maven world is a project and every project 
has a unique identity 

• Project identity is specified by project “coordinates”
> Consider it as an address for a specific point in “space”
> Uniquely identifies a project in repositories

• Dependencies and parent references are described with 
their own project coordinates

• Created with the combination of the following
  

  <groupId>com.javapassion.examples</groupId>
  <artifactId>helloworld_app</artifactId>
  <version>1.0-SNAPSHOT</version>
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Project Identity

• groupId
> Typically represents an organization 
> Convention is using reverse domain name
> Example: com.javapassion.examples

• artifactId
> A unique identifier under groupId

• version
> A specific version of a project
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ArchetypeArchetype
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What is Archetype?

• “Archetype” is “an original model or type after which other 
similar things can be patterned or prototyped”
> Can be thought of a project template

• Captures the best practices
> Directory structure, dependencies, plugin's needed

• There are many archetypes already provided by Maven 
community
> Simple Java SE app
> Spring app
> Hibernate app
> JSF app
> Java EE 6 app
> Many more
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User-specific User-specific 
configuration &configuration &
Local repositoryLocal repository
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User specific configuration and 
Local Repository
• <Home_directory>/.m2/settings.xml

> Contains user specific configuration for authentication, 
repositories, and other information to customize the behavior of 
Maven

• <Home_directory>/.m2/repository
> Local Maven repository
> Stores locally generated artifacts (jar files, war files, etc.)
> Stores copies of dependencies downloaded from remote 

repositories
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<Home_directory>/.m2/repository
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Maven Lifecycle & Maven Lifecycle & 
PhasesPhases
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Build Lifecycle Basics

• Maven is based around the central concept of a build 
lifecycle 
> What this means is that the process for building and distributing a 

particular artifact (project) is clearly defined.
> For the person building a project, this means that it is only 

necessary to learn a small set of commands to build any Maven 
project, and the POM will ensure they get the results they desired.

• There are three built-in build lifecycles: 
> default - handles your project build/test/deployment 
> clean – handles project cleaning
> site - handles the creation of your project's site documentation.
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Phases of Build Lifecycle

• Each of these build lifecycles is defined by a different list of 
build phases, wherein a build phase represents a stage in 
the lifecycle.
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“Default” Lifecycle's Build Phases
• validate - validate the project is correct and all necessary information is 

available
• compile - compile the source code of the project
• test - test the compiled source code using a suitable unit testing framework. 

These tests should not require the code be packaged or deployed
• package - take the compiled code and package it in its distributable format, 

such as a JAR or a WAR file
• integration-test - process and deploy the package if necessary into an 

environment where integration tests can be run
• verify - run any checks to verify the package is valid and meets quality 

criteria
• install - install the package into the local repository, for use as a dependency 

in other projects locally
• deploy - done in an integration or release environment, copies the final 

package to the remote repository for sharing with other developers and 
projects. 
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Build Lifecycle Basics

• These build phases are executed sequentially to complete 
the lifecycle

• mvn compile
> All the phases up to compile phase will be executed in sequence

• mvn test
> All the phases up to test phase will be executed in sequence

• mvn install
> All the phases up to install phase will be executed in sequence

• mvn integration-test
> All the phases up to integration-test phase (validate, compile, 

package, etc.) will be executed in sequence
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“Clean” Lifecycle's Phases
• pre-clean - executes processes needed prior to the actual project cleaning
• clean - remove all files generated by the previous build
• post-clean - executes processes needed to finalize the project cleaning
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Phases and Goals

• Plugin goals can be attached to a lifecycle phase

• As Maven moves through the phases in a lifecycle, it will 
execute the goals attached to each particular phase
> Each phase may have zero or more goals (of various plugins) 

bound to it
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Lab:Lab:

Exercise 1: Create a simple Exercise 1: Create a simple 
Maven Project at the commandlineMaven Project at the commandline

Step 4-6 Step 4-6 
5072_tools_maven.zip5072_tools_maven.zip
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Maven RepositoriesMaven Repositories
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What is a Repository?

• Maintains plugins and artifacts
> The plugins and artifacts are retrieved from the remote repository 

as needed basis

• Default remote repositories maintain public plugins and 
artifacts
> http://repo1.maven.org/maven2
> Called “Maven Central”

• Custom repositories can be set up to maintain non-public 
plugins and artifacts
> The default remote repositories can to be replaced or augmented 

with references to custom repositories
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Repository Structure

• Each artifact is maintained in a directory structure that 
matches a project coordinates
> /<groupId>/<artifactId>/<version>/<artifactId>-

<version>.<packaging>

• Example
> “org.apache.commons:commons-email:1.1”  (artifact)
> “/org/apache/commons/commons-emai/1.1/commons-email-

1.1.jar” (directory path)
> junit:junit:3.8.1 is available as /junit/junit/3.8.1/junit-3.8.1.jar

• Maven can easily locate the artifact in a repository (local and remote) 
based on artifact coordinates
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Maven Central 
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Lab:Lab:

Maven Central DemoMaven Central Demo
http://search.maven.org/#browse|47http://search.maven.org/#browse|47
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Plugins and GoalsPlugins and Goals
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Plugin Architecture

• Maven is based on Plugin architecture
> All Maven tasks are performed through plugins

• Maven core is basically a shell 
> It parses a POM file and figures out which plugins are needed and 

then download them 

• Plugins are downloaded, like dependencies are 
downlaoded, from remote repositories as needed basis and 
updated periodically
> A plugin is a Maven project and has its own identity (coordinates)
> A downloaded plugin is then maintained in the local repository 
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What is Maven Plugin?

• A Maven plugin is a collection of one or more goals

• Examples of “ready-to-use” plugins
> Archetype plugin - contains goals for creating Maven projects
> Jar plugin - contains goals for creating JAR files
> Compiler plugin - contains goals for compiling source code and 

unit tests
> Hibernate3 plugin - contains goals for integration with the 

Hibernate library
> JRuby plugin - contains goals for executing JRuby as part of 

Maven build
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Custom Plugin

• You can create a custom plugin

• A custom plugin can be written in many languages
> Java, Groovy, Ant, Ruby, etc
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Benefits of Plugin Architecture

• Common plugin used by everyone to every project
> Everyone understands what the plugin does - no need to relearn

• Plugin can evolve/improve without breaking other parts of 
the build

• Change/improvement in a plugin (by community) benefit 
everyone  
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What is Maven Goal?

• Goal is a unit of task
> Same as “target” in Ant

• Example goals
> “generate” goal of the “archetype” plugin
> “compile” goal of the “compiler” plugin
> “test” goal of the “surefire” plugin
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Plugins Can be Configured

• Plugins can be configured via configuration properties

• Example - Use JDK 1.6 for Compiler plugin
<build>
  <plugins>
    <plugin>
      <groupId>org.apache.maven.plugins</groupId>
      <artifactId>maven-compiler-plugin</artifactId>
      <version>2.3.2</version>
      <configuration>
         <source>1.6</source>
         <target>1.6</target>
      </configuration>
    </plugin>
  </plugins>
</build>
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Example: Make Executable Jar Plug-in

<build>
  <plugins>
    <plugin>

       <groupId>org.apache.maven.plugins</groupId>
       <artifactId>maven-jar-plugin</artifactId>
       <configuration>
           <archive>
              <manifest>
                 <addClasspath>true</addClasspath>         
                 <mainClass>com.javapassion.examples.App
                 </mainClass>
              </manifest>
           </archive>
       </configuration>

     </plugin>
  </plugins>
</build>
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Lab:Lab:

Exercise 2: Use a “Make Executable Jar”Exercise 2: Use a “Make Executable Jar”
Plugin Plugin 

5072_tools_maven.zip5072_tools_maven.zip
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Dependency Dependency 
ManagementManagement
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How Dependency is Specified

• Each dependency is specified using the coordinates
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-
v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>com.javapassion.examples</groupId>
  <artifactId>helloworld_app</artifactId>
  <packaging>jar</packaging>
  <version>1.0-SNAPSHOT</version>
  <name>helloworld_app</name>
  <url>http://maven.apache.org</url>
  <dependencies>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>3.8.1</version>
      <scope>test</scope>
    </dependency>
  </dependencies>
</project>
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Transitive Dependencies

• Usage scenario
> Your project has depends on a library A
> Library A depends on 5 other libraries - B,C,D,E,F

• Your project need to specify dependency only on A
> Maven will handle the fact that A depends on B,C,D,E,F

• Maven also handles the conflict between dependencies 
• You can see the dependency tree through Maven command

> mvn dependency:tree
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mvn dependency:tree
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Dependency Scope

• Each dependency is specified with a scope
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-
v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>com.javapassion.examples</groupId>
  <artifactId>helloworld_app</artifactId>
  <packaging>jar</packaging>
  <version>1.0-SNAPSHOT</version>
  <name>helloworld_app</name>
  <url>http://maven.apache.org</url>
  <dependencies>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>3.8.1</version>
      <scope>test</scope>
    </dependency>
  </dependencies>
</project>
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Dependency Scope Example

• When a dependency has a scope of “test”, it will not be 
available to the “compile” goal of the Compiler plugin

• It will be added to the classpath for only the 
“compiler:testCompile” and “surefire:test” goals
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Dependency Scope (1)

• compile
> Default scope, used if none is specified.

• provided
> Much like compile, but indicates you expect the JDK or a container 

to provide the dependency at runtime. 
> For example, when building a web application, you would set the 

dependency on the Servlet API and related Java EE APIs to scope 
provided because the web container provides those classes. 

> This scope is only available on the compilation and test classpath, 
and is not transitive.

• runtime
> The dependency is not required for compilation, but is for 

execution. It is in the runtime and test classpaths, but not the 
compile classpath.
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Dependency Scopes (2)

• test
> Dependency is not required for normal use of the application, and 

is only available for the test compilation and execution phases.

• system
> Similar to provided except that you have to provide the JAR which 

contains it explicitly. The artifact is always available and is not 
looked up in a repository.

• import (only available in Maven 2.0.9 or later)
> Only used on a dependency of type pom in the 

<dependencyManagement> section
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Packaging of Dependencies

• When you create a JAR for a project
> Dependencies are not bundled with the generated artifact - they 

are used only for compilation

• When you create a WAR/EAR file
> You can configure POM so that dependencies are bundled with 

the generated artifact
> You can also configure to exclude certain dependencies using 

“provided” scope - a dependency is needed for compilation but 
should be not be bundled
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Lab:Lab:

Exercise 3: Add Log4J DependencyExercise 3: Add Log4J Dependency
5072_tools_maven.zip5072_tools_maven.zip
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Maven Support in IDE'sMaven Support in IDE's
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Maven Support

• Each IDE uses its own proprietary project metadata
> Results in IDE lock-in

• Maven standardized project metadata
> Developer can use whatever IDE of his/her choice on any Maven 

projects

• All major IDE's (Eclipse, NetBeans, Intellij IDEA, etc) 
support Maven
> Create a Maven project, Import a Maven project
> Extras: form-based POM editor

• Tight integration with other IDE build tools
> Version management
> Task management
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Lab:Lab:

Exercise 5: Import a Maven Project into EclipseExercise 5: Import a Maven Project into Eclipse
5072_tools_maven.zip5072_tools_maven.zip
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Maven Web ProjectMaven Web Project
StructureStructure
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Maven Web Project Structure

• /src/main/java - source files for the dynamic content of the 
application

• /src/test/java - source files for unit tests

• /src/main/webapp - files for creating a valid web application, 
e.g. “web.xml“, view pages, etc

• /target - compiled and packaged deliverable
• pom.xml 
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Lab:Lab:

Exercise 7: Create a simple MavenExercise 7: Create a simple Maven
Web Project using EclipseWeb Project using Eclipse

5072_tools_maven.zip5072_tools_maven.zip
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Comparison to AntComparison to Ant
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Example: Ant
<project name="my-project" default="dist" basedir=".">
    <description>
        simple example build file
    </description>
  <!-- set global properties for this build -->
  <property name="src" location="src/main/java"/>
  <property name="build" location="target/classes"/>
  <property name="dist"  location="target"/>

  <target name="init">
    <!-- Create the time stamp -->
    <tstamp/>
    <!-- Create the build directory structure used by compile -->
    <mkdir dir="${build}"/>
  </target>

  <target name="compile" depends="init"
        description="compile the source " >
    <!-- Compile the java code from ${src} into ${build} -->
    <javac srcdir="${src}" destdir="${build}"/>
  </target>

  <target name="dist" depends="compile"
        description="generate the distribution" >
    <!-- Create the distribution directory -->
    <mkdir dir="${dist}/lib"/>

    <!-- Put everything in ${build} into the MyProject-${DSTAMP}.jar file -->
    <jar jarfile="${dist}/lib/MyProject-${DSTAMP}.jar" basedir="${build}"/>
  </target>

  <target name="clean"
        description="clean up" >
    <!-- Delete the ${build} and ${dist} directory trees -->
    <delete dir="${build}"/>

    <delete dir="${dist}"/>
  </target>
</project>
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Ant vs. Maven

• Ant
> It doesn't have formal conventions like a common project directory 

structure or default behavior. You have to tell Ant exactly where to 
find the source and where to put the output. 

> It is procedural. You have to tell Ant exactly what to do and when 
to do it. You have to tell it to compile, then copy, then compress. 

> It doesn't have a lifecycle. You have to define goals and goal 
dependencies. You have to attach a sequence of tasks to each 
goal manually. 
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Example: Maven
<project>

  <modelVersion>4.0.0</modelVersion>

  <groupId>org.sonatype.mavenbook</groupId>

  <artifactId>my-project</artifactId>

  <version>1.0</version>

</project>
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Ant vs. Maven

• Maven
> It has conventions. It knows where your source code is because 

you followed the convention. Maven's Compiler plugin puts the 
bytecode in target/classes, and it produces a JAR file in target. 

> It is declarative. All you had to do is to create a pom.xml file and 
put your source in the default directory. Maven takes care of the 
rest. 

> It has a lifecycle which gets invoked when you executes mvn 
install. This command told Maven to execute a series of sequential 
lifecycle phases until it reaches the install lifecycle phase. As a 
side-effect of this journey through the lifecycle, Maven executes a 
number of default plugin goals which did things like compile and 
create a JAR. 
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    Learn with Passion!Learn with Passion!
JPassion.comJPassion.com
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