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Agenda
• Entity Relationships
• Directionality
• Cardinality 
• Inheritance (will be covered in “JPA Mapping II”) 
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Aspects of Entity Relationships
• Directionality

> Uni-directional 
> Bi-directional

• Cardinality relationships
> One to one
> One to many
> Many to many

• Inheritance relationship
> Single-table
> Joined-table
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Entity Relationships: Java vs. Table
• Relationship between entities in Java code is normal object 

relationship 
• Relationship among tables can be represented in two forms

> Join table
> Foreign key

• You can control how the object relationship between Java 
objects can be mapped into tables through JPA annotations
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DirectionalityDirectionality
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Directionality & Navigation
• Directionality affects the navigation
• Uni-directional

> customer.getAddress() is allowed but address.getCustomer() is not 
supported for one-to-one relationship

> customer.getOrders() is allowed but order.getCustomer() is not 
supported for one-to-many relationship

> speaker.getEvents() is allowed but event.getSpeakers() is not 
supported for many-to-many relationship

• Bi-directional
> Navigation on both direction are supported
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Directionality & Ownership
• Relationship has an ownership

> Who owns the relationship affects the how tables are created
• Uni-directional

> Ownership is implied
• Bi-directional

> Ownership needs to be explicitly specified
> Owner of the relationship, inverse-owner of the relationship



CardinalityCardinality
RelationshipsRelationships
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Cardinality Entity Relationships

• Cardinality relationships
> @OneToOne: Customer – Address
> @OneToMany, @ManyToOne: Customer - Orders
> @ManyToMany: Speakers - Events

• One-to-Many and Many-to-Many relationships are 
represented in Java code through
> Collection, Set, List and Map



11

Cardinality & Ownership

• @OneToOne bidirectional relationship
> The owner is the side with the foreign key

• @OneToMany, @ManyToOne bidirectional 
relationshgip
> The owner is always the “Many” side

• @ManyToMany bidirectional relationship



CardinalityCardinality
Relationships:Relationships:

One to OneOne to One
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One to One Relationships

• Directionality
> One-to-One Unidirectional 
> One-to-One Bidirectional

• Table model
> Always Foreign key based (No join table)
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Demo:Demo:
jpa1_0x_OneToOne_*jpa1_0x_OneToOne_*

4321_jpa_mapping.zip4321_jpa_mapping.zip



CardinalityCardinality
Relationships:Relationships:
One to ManyOne to Many
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One to Many Relationships

• Directionality
> One-to-Many Unidirectional 
> One-to-Many Bidirectional

• Table model
> Join Table (default) or
> Foreign key column
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Relationship Mappings – OneToMany 

public class Order {
 
  int id;
  ...
  Customer cust;
}

public class Customer {
 
  int id;
  ...
 
 
 List<Order> orders;
}

@Entity @Entity

 @ManyToOne 
@OneToMany(mappedBy=“cust”)

@Id @Id

CUSTOMER
ID . . .

ORDER
CUST_IDID . . .
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Relationship Mappings – ManyToOne

Automatically creates a CUST_ID field for mapping. Can 
be overridden via @JoinColumn (or @JoinColumns for 
composite foreign keys).

public class Order { 
    int id;
    Customer cust;
}

ORDER
CUST_IDID

CUSTOMER
. . .ID

@Entity

@ManyToOne
@Id

CUST_ID
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Examples: OneToMany & ManyToOne

Example 1
Customer Entity

@OneToMany(mappedBy=”cust”)
public Set<Order> orders;

Order Entity
@ManyToOne public Customer cust;

Example 2
Customer Entity

@OneToMany(mappedBy=”cust”, cascade=ALL)
public Set<Order> orders;

Order Entity
@ManyToOne 
@JoinColumn(name=”my_cust_id”)
public Customer cust;
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Relationship Mappings – ManyToMany

public class Customer {
 
  int id;
  ...
  Collection<Phone> phones;
}

PHONES_IDCUSTS_ID

@Entity @Entity
@Id @Id

@ManyToMany @ManyToMany(mappedBy=“phones”)

public class Phone {
 
  int id;
  ...
Collection<Customer> custs;
}

CUSTOMER
ID . . .

PHONE
ID . . .

CUSTOMER_PHONE

Join table name is made up of the 2 entities. Field name is 
the name of the entity plus the name of the PK field.
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Demo:Demo:
jpa1_0x_OneToMany_*jpa1_0x_OneToMany_*

4321_jpa_mapping.zip4321_jpa_mapping.zip



CardinalityCardinality
Relationships:Relationships:
Many to ManyMany to Many
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Many to Many Relationships

• Directionality
> Many-to-Many Unidirectional
> Many-to-Many Bidirectional

• Table model
> Always Join Table
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Example – ManyToMany

PHONES_IDCUSTS_ID

CUSTOMER
ID . . .

PHONE
ID . . .

CUST_PHONE

@Entity(access=FIELD)
public class Customer {
  ...
  @ManyToMany
  @JoinTable(name=“CUST_PHONE”,
    joinColumns=@JoinColumn(name=“CUSTS_ID”),
    inverseJoinColumns=@JoinColumn(name=“PHONES_ID”))
  Collection<Phone> phones;
}

We are overriding the default OR mapping 
here.
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Demo:Demo:
jpa1_0x_ManyToMany_*jpa1_0x_ManyToMany_*

4321_jpa_mapping.zip4321_jpa_mapping.zip



CascadingCascading
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Cascading Behavior
• Cascading is used to propagate the effect of an operation to 

associated entities
• Cascading operations will work only when entities are 

associated to the persistence context
> If a cascaded operation takes place on detached entity, 

IllegalArgumentException is thrown
• Cascade=PERSIST
• Cascade=REMOVE
• Cascade=MERGE
• Cascade=REFRESH
• Cascade=ALL
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                  Thank you!Thank you!

Check JavaPassion.com Codecamps!Check JavaPassion.com Codecamps!
http://www.javapassion.com/codecampshttp://www.javapassion.com/codecamps
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http://www.javapassion.com/codecamps
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