
1

JPA Mapping IJPA Mapping I

Sang ShinSang Shin
www.JPassion.comwww.JPassion.com

““Learn with JPassion!”Learn with JPassion!”

1

2

Agenda
• Entity Relationships
• Directionality
• Cardinality
• Inheritance (will be covered in “JPA Mapping II”)

3

EntityEntity
RelationshipsRelationships

4

Aspects of Entity Relationships
• Directionality

> Uni-directional
> Bi-directional

• Cardinality relationships
> One to one
> One to many
> Many to many

• Inheritance relationship
> Single-table
> Joined-table

5

Entity Relationships: Java vs. Table
• Relationship between entities in Java code is normal object

relationship
• Relationship among tables can be represented in two forms

> Join table
> Foreign key

• You can control how the object relationship between Java
objects can be mapped into tables through JPA annotations

6

DirectionalityDirectionality

7

Directionality & Navigation
• Directionality affects the navigation
• Uni-directional

> customer.getAddress() is allowed but address.getCustomer() is not
supported for one-to-one relationship

> customer.getOrders() is allowed but order.getCustomer() is not
supported for one-to-many relationship

> speaker.getEvents() is allowed but event.getSpeakers() is not
supported for many-to-many relationship

• Bi-directional
> Navigation on both direction are supported

8

Directionality & Ownership
• Relationship has an ownership

> Who owns the relationship affects the how tables are created
• Uni-directional

> Ownership is implied
• Bi-directional

> Ownership needs to be explicitly specified
> Owner of the relationship, inverse-owner of the relationship

CardinalityCardinality
RelationshipsRelationships

10

Cardinality Entity Relationships

• Cardinality relationships
> @OneToOne: Customer – Address
> @OneToMany, @ManyToOne: Customer - Orders
> @ManyToMany: Speakers - Events

• One-to-Many and Many-to-Many relationships are
represented in Java code through
> Collection, Set, List and Map

11

Cardinality & Ownership

• @OneToOne bidirectional relationship
> The owner is the side with the foreign key

• @OneToMany, @ManyToOne bidirectional
relationshgip
> The owner is always the “Many” side

• @ManyToMany bidirectional relationship

CardinalityCardinality
Relationships:Relationships:

One to OneOne to One

13

One to One Relationships

• Directionality
> One-to-One Unidirectional
> One-to-One Bidirectional

• Table model
> Always Foreign key based (No join table)

14

Demo:Demo:
jpa1_0x_OneToOne_*jpa1_0x_OneToOne_*

4321_jpa_mapping.zip4321_jpa_mapping.zip

CardinalityCardinality
Relationships:Relationships:
One to ManyOne to Many

16

One to Many Relationships

• Directionality
> One-to-Many Unidirectional
> One-to-Many Bidirectional

• Table model
> Join Table (default) or
> Foreign key column

17

Relationship Mappings – OneToMany

public class Order {

 int id;
 ...
 Customer cust;
}

public class Customer {

 int id;
 ...

 List<Order> orders;
}

@Entity @Entity

 @ManyToOne
@OneToMany(mappedBy=“cust”)

@Id @Id

CUSTOMER
ID . . .

ORDER
CUST_IDID . . .

18

Relationship Mappings – ManyToOne

Automatically creates a CUST_ID field for mapping. Can
be overridden via @JoinColumn (or @JoinColumns for
composite foreign keys).

public class Order {
 int id;
 Customer cust;
}

ORDER
CUST_IDID

CUSTOMER
. . .ID

@Entity

@ManyToOne
@Id

CUST_ID

19

Examples: OneToMany & ManyToOne

Example 1
Customer Entity

@OneToMany(mappedBy=”cust”)
public Set<Order> orders;

Order Entity
@ManyToOne public Customer cust;

Example 2
Customer Entity

@OneToMany(mappedBy=”cust”, cascade=ALL)
public Set<Order> orders;

Order Entity
@ManyToOne
@JoinColumn(name=”my_cust_id”)
public Customer cust;

20

Relationship Mappings – ManyToMany

public class Customer {

 int id;
 ...
 Collection<Phone> phones;
}

PHONES_IDCUSTS_ID

@Entity @Entity
@Id @Id

@ManyToMany @ManyToMany(mappedBy=“phones”)

public class Phone {

 int id;
 ...
Collection<Customer> custs;
}

CUSTOMER
ID . . .

PHONE
ID . . .

CUSTOMER_PHONE

Join table name is made up of the 2 entities. Field name is
the name of the entity plus the name of the PK field.

21

Demo:Demo:
jpa1_0x_OneToMany_*jpa1_0x_OneToMany_*

4321_jpa_mapping.zip4321_jpa_mapping.zip

CardinalityCardinality
Relationships:Relationships:
Many to ManyMany to Many

23

Many to Many Relationships

• Directionality
> Many-to-Many Unidirectional
> Many-to-Many Bidirectional

• Table model
> Always Join Table

24

Example – ManyToMany

PHONES_IDCUSTS_ID

CUSTOMER
ID . . .

PHONE
ID . . .

CUST_PHONE

@Entity(access=FIELD)
public class Customer {
 ...
 @ManyToMany
 @JoinTable(name=“CUST_PHONE”,
 joinColumns=@JoinColumn(name=“CUSTS_ID”),
 inverseJoinColumns=@JoinColumn(name=“PHONES_ID”))
 Collection<Phone> phones;
}

We are overriding the default OR mapping
here.

25

Demo:Demo:
jpa1_0x_ManyToMany_*jpa1_0x_ManyToMany_*

4321_jpa_mapping.zip4321_jpa_mapping.zip

CascadingCascading

27

Cascading Behavior
• Cascading is used to propagate the effect of an operation to

associated entities
• Cascading operations will work only when entities are

associated to the persistence context
> If a cascaded operation takes place on detached entity,

IllegalArgumentException is thrown
• Cascade=PERSIST
• Cascade=REMOVE
• Cascade=MERGE
• Cascade=REFRESH
• Cascade=ALL

28

 Thank you!Thank you!

Check JavaPassion.com Codecamps!Check JavaPassion.com Codecamps!
http://www.javapassion.com/codecampshttp://www.javapassion.com/codecamps

39

http://www.javapassion.com/codecamps

	Slide 1
	Agenda
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

