JEANVIAPRINGH

el)

SIS
WV PASSIONICOM

4

EeANMWItI S EASSION S

L.
44

Agenda

» Entity Relationships

» Directionality

- Cardinality

* Inheritance (will be covered in “JPA Mapping II")

Entity,
Relationships

Aspects of Entity Relationships

* Directionality
> Uni-directional
> Bi-directional

> Cardinality relationships
> One to one
> One to many
> Many to many

» Inheritance relationship
> Single-table
> Joined-table

Entity Relationships: Java vs. Table

* Relationship between entities in Java code is normal object
relationship

- Relationship among tables can be represented in two forms
> Join table
> Foreign key

* You can control how the object relationship between Java
objects can be mapped into tables through JPA annotations

Directionality

Directionality & Navigation

* Directionality affects the navigation

* Uni-directional

> customer.getAddress() is allowed but address.getCustomer() is not
supported for one-to-one relationship

> customer.getOrders() is allowed but order.getCustomer() is not
supported for one-to-many relationship

> speaker.getEvents() is allowed but event.getSpeakers() is not
supported for many-to-many relationship
* Bi-directional
> Navigation on both direction are supported

Directionality & Ownership

» Relationship has an ownership
> Who owns the relationship affects the how tables are created

* Uni-directional
> Ownership is implied

* Bi-directional
> Ownership needs to be explicitly specified
> Owner of the relationship, inverse-owner of the relationship

Gardinality
Relationships

Cardinality Entity Relationships

- Cardinality relationships
> @OneToOne: Customer — Address
> @OneToMany, @ManyToOne: Customer - Orders
> @ManyToMany: Speakers - Events

* One-to-Many and Many-to-Many relationships are
represented in Java code through

> Collection, Set, List and Map

10

Cardinality & Ownership

* @OneToOne bidirectional relationship
> The owner is the side with the foreign key

- @OneToMany, @ManyToOne bidirectional
relationshgip

> The owner is always the “Many” side
- @ManyToMany bidirectional relationship

11

Cardinality
Relationshipss
@neto)one

One to One Relationships

* Directionality
> One-to-One Unidirectional
> One-to-One Bidirectional

- Table model
> Always Foreign key based (No join table)

13

14

Cardinality
Relationshipss
@neito Viany

One to Many Relationships

* Directionality
> One-to-Many Unidirectional
> One-to-Many Bidirectional

» Table model
> Join Table (default) or
> Foreign key column

16

Relationship Mappings — OneToMany

@Entity

@Id

@ManyToOne
@OneToMany (mappedBy="cust”) Customer cust;
List<Order> orders;

'~ CUSTOMER | '~ ORDER]
ID . | ID| CUST.ID | ... |
t |

17

Relationship Mappings — ManyToOne

@Entity

eId

@ManyToOne

CUST_ID

'~ ORDER / '~ \\ CUSTOMER
D | CUST.ID > D

Automatically creates a CUST ID field for mapping. Can
be overridden via @JoinColumn (or @JoinColumns for

composite foreign keys). "

Examples: OneToMany & ManyToOne

Example 1

Customer Entity
@OneToMany(mappedBy="cust”)
public Set<Order> orders;

Order Entity
@ManyToOne public Customer cust;

Example 2

Customer Entity
@OneToMany(mappedBy="cust”, cascade=ALL)
public Set<Order> orders;

Order Entity
@ManyToOne
@dJoinColumn(name="my_cust _id")
public Customer cust;

19

Relationship Mappings — ManyToMany

@Entity

eId

@ManyToMany

{.

CUSTOMER

|

ID

T

@Entity

eId

@ManyToMany (mappedBy="phones”)

{.

PHONE

D

'CUSTOMER_PHONE
CUSTSJD‘PHONESJD

Join table name is made up of the 2 entities. Field name is
the name of the entity plus the name of the PK field.

20

21

Cardinality
Relationshipss
Viany toriviany

Many to Many Relationships

* Directionality
> Many-to-Many Unidirectional
> Many-to-Many Bidirectional

» Table model
> Always Join Table

23

Example — ManyToMany

@Entity (access=FIELD)

@ManyToMany

@JoinTable (name="CUST PHONE”,
joinColumns=@JoinColumn (name="CUSTS ID”),
inverseJoinColumns=@JoinColumn (name="PHONES ID"))

~ CUSTOMER ~ PHONE
\ ID

- - CUST_PHONE |
T CUSTSJD‘PHONESJD
We are overriding the default OR mapping
here.

24

25

Cascading

Cascading Behavior

» Cascading is used to propagate the effect of an operation to
associated entities

» Cascading operations will work only when entities are
associated to the persistence context

> |f a cascaded operation takes place on detached entity,
lllegalArgumentException is thrown

» Cascade=PERSIST
» Cascade=REMOVE
» Cascade=MERGE

» Cascade=REFRESH
» Cascade=ALL

27

ankeyoul

GHECKE AV AEASSI OICONNGOUECANIS]

4

rstod vy javagassion.com/codscamos

http://www.javapassion.com/codecamps

	Slide 1
	Agenda
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

