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Agenda

» Entity Relationships

» Directionality

- Cardinality

* Inheritance (will be covered in “JPA Mapping II")
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Aspects of Entity Relationships

* Directionality
> Uni-directional
> Bi-directional

> Cardinality relationships
> One to one
> One to many
> Many to many

» Inheritance relationship
> Single-table
> Joined-table



Entity Relationships: Java vs. Table

* Relationship between entities in Java code is normal object
relationship

- Relationship among tables can be represented in two forms
> Join table
> Foreign key

* You can control how the object relationship between Java
objects can be mapped into tables through JPA annotations
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Directionality & Navigation

* Directionality affects the navigation

* Uni-directional

> customer.getAddress() is allowed but address.getCustomer() is not
supported for one-to-one relationship

> customer.getOrders() is allowed but order.getCustomer() is not
supported for one-to-many relationship

> speaker.getEvents() is allowed but event.getSpeakers() is not
supported for many-to-many relationship
* Bi-directional
> Navigation on both direction are supported



Directionality & Ownership

» Relationship has an ownership
> Who owns the relationship affects the how tables are created

* Uni-directional
> Ownership is implied

* Bi-directional
> Ownership needs to be explicitly specified
> Owner of the relationship, inverse-owner of the relationship
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Cardinality Entity Relationships

- Cardinality relationships
> @OneToOne: Customer — Address
> @OneToMany, @ManyToOne: Customer - Orders
> @ManyToMany: Speakers - Events

* One-to-Many and Many-to-Many relationships are
represented in Java code through

> Collection, Set, List and Map
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Cardinality & Ownership

* @OneToOne bidirectional relationship
> The owner is the side with the foreign key

- @OneToMany, @ManyToOne bidirectional
relationshgip

> The owner is always the “Many” side
- @ManyToMany bidirectional relationship
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One to One Relationships

* Directionality
> One-to-One Unidirectional
> One-to-One Bidirectional

- Table model
> Always Foreign key based (No join table)
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One to Many Relationships

* Directionality
> One-to-Many Unidirectional
> One-to-Many Bidirectional

» Table model
> Join Table (default) or
> Foreign key column
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Relationship Mappings — OneToMany

@Entity

@Id

@ManyToOne
@OneToMany (mappedBy="cust”) Customer cust;
List<Order> orders;

'~ CUSTOMER | '~ ORDER ]
ID . | ID| CUST.ID | ... |
t |
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Relationship Mappings — ManyToOne

@Entity

eId

@ManyToOne

CUST_ID

'~ ORDER / '~ \\ CUSTOMER
D | CUST.ID > D

Automatically creates a CUST ID field for mapping. Can
be overridden via @JoinColumn (or @JoinColumns for

composite foreign keys). "



Examples: OneToMany & ManyToOne

Example 1

Customer Entity
@OneToMany(mappedBy="cust”)
public Set<Order> orders;

Order Entity
@ManyToOne public Customer cust;

Example 2

Customer Entity
@OneToMany(mappedBy="cust”, cascade=ALL)
public Set<Order> orders;

Order Entity
@ManyToOne
@dJoinColumn(name="my_cust _id")
public Customer cust;
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Relationship Mappings — ManyToMany

@Entity

eId

@ManyToMany

{.

CUSTOMER

|

ID

T

@Entity

eId

@ManyToMany (mappedBy="phones”)

{.

PHONE

D

'CUSTOMER_PHONE
CUSTSJD‘PHONESJD

Join table name is made up of the 2 entities. Field name is
the name of the entity plus the name of the PK field.
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Many to Many Relationships

* Directionality
> Many-to-Many Unidirectional
> Many-to-Many Bidirectional

» Table model
> Always Join Table
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Example — ManyToMany

@Entity (access=FIELD)

@ManyToMany

@JoinTable (name="CUST PHONE”,
joinColumns=@JoinColumn (name="CUSTS ID”),
inverseJoinColumns=@JoinColumn (name="PHONES ID"))

~ CUSTOMER ~ PHONE
\ ID

- - CUST_PHONE |
T CUSTSJD‘PHONESJD
We are overriding the default OR mapping
here.
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Cascading Behavior

» Cascading is used to propagate the effect of an operation to
associated entities

» Cascading operations will work only when entities are
associated to the persistence context

> |f a cascaded operation takes place on detached entity,
lllegalArgumentException is thrown

» Cascade=PERSIST
» Cascade=REMOVE
» Cascade=MERGE

» Cascade=REFRESH
» Cascade=ALL
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