
AngularJS: Services and DI

GuruTeam Instructor: Sang Shin

2

Topics
• What is and why service?

• Built-in (Angular provided) services
> $log, $location, $timeout, $interval

• Dependency injection (DI)

• Creating a custom service

 What is and Why Service?What is and Why Service?

4

What is and Why Service?
• Angular services are reusable objects

> You can use services to organize and share code across your app

• A service can be injected into controller, another service, filter,
directive that depends on that service
> Angular's dependency injection subsystem ($injector) handles

dependency injection

• Angular services are:
> Lazily instantiated – Angular only instantiates a service when an

application component depends on it
> Singletons – Each component dependent on a service gets a

reference to the single instance generated by the service factory

5

Angular has many built-in services
• Angular offers several useful services (like $http), but for most

applications you'll also want to create your own
> Like other core Angular identifiers, built-in services always start with $

(e.g. $http)

• https://docs.angularjs.org/api/ng/service
> $animate, $controller, $document, $exceptionHandler
> $filter, $http, $interval, $locale, $location
> $log, $parse, $q, $rootElement, $rootScope
> $timeout, $window

https://docs.angularjs.org/api/ng/service

Built-in Services:Built-in Services:
$log service, $log service,
$location service,$location service,
$Timeout service,$Timeout service,
$Interval service$Interval service

7

$log service
• Simple service for logging

• Default implementation writes the message into the browser's
console

angular.module('logExample', [])
.controller('LogController', ['$scope', '$log', function($scope, $log) {
 $scope.$log = $log;
 $scope.message = 'Hello World!';
}]);

8

$location service (getter & setter)
• Is used to both get location data and set location data

> Getter: The $location service parses the URL in the browser address
bar (based on the window.location) and makes the URL available to
your application

> Setter: Changes to the URL in the address bar are reflected into
$location service and changes to $location are reflected into the
browser address bar

myApp.controller('MyController', ['$scope', '$location', function ($scope, $location) {
 // given url http://example.com/#/some/path?foo=bar&baz=xoxo
 $scope.absUrl = $location.absUrl(); // getter example
 // => "http://example.com/#/some/path?foo=bar&baz=xoxo"

 $scope.setpath = function (path) {
 $location.path(path); // setter example
 }
}]);

9

$timeout service
• $timeout service is Angular's wrapper for window.setTimeout

myApp.controller('MyController', ['$scope', '$timeout', function ($scope, $timeout) {
 $scope.timeout = function (duration) {
 $scope.duration = duration;
 $timeout(callTimeout, duration);
 }

 function callTimeout() {
 $scope.message = "Timeout occurred in " + $scope.duration / 1000 + "
seconds";
 }
}]);

10

$interval service
• Used to rigger any functions scheduled to run in that time.

myApp.controller('MyController', ['$scope', '$interval', function ($scope, $interval) {
 …

 $scope.callAtInterval = function (duration) {
 $interval(callTimeout, duration);
 $scope.duration = duration;
 }

 function callTimeout() {
 $scope.totalDurationInSeconds += $scope.duration / 1000;
 $scope.messages.push("Timeout occurred in " +
$scope.totalDurationInSeconds + " seconds");
 }
}]);

11

Lab:Lab:

Exercise 1: $log, $location, Exercise 1: $log, $location,
$timeout, $interval services$timeout, $interval services

3305_angularjs_05_services_and_di.zip3305_angularjs_05_services_and_di.zip

Dependency InjectionDependency Injection

13

What is and Why DI?
• Dependency Injection (DI) is a software design pattern that deals

with how components get hold of their dependencies
> The component can have the dependency passed to it where it is

needed - it removes the responsibility of locating the dependency
from the component. The dependency is simply handed to the
component

> Simpler to code and test

• Dependency injection helps to make your web applications both
well-structured (e.g. separate entities for presentation, data, and
control) and loosely coupled
> Dependencies between entities are not resolved by the entities

themselves, but by the DI subsystem

14

Injection Syntax
• Implicit annotation

> The simplest way to get hold of the dependencies is to assume that
the function parameter names are the names of the dependencies

> Downside of this approach - If you plan to minify your code, your
service names will get renamed and break your app

myModule.controller('MyController', function($scope, greeter) {
 // ...
});

• Inline array annotation (preferred)
> In order to avoid the minification problem of implicit annotation

scheme, you can specify the dependencies explicitly
someModule.controller('MyController', ['$scope', 'greeter', function($scope, greeter) {
 // ...
}]);

15

Using Strict Dependency Injection
• Add an ng-strict-di directive on the same element as ng-app to opt

into strict DI mode - Strict mode throws an error whenever a service
tries to use implicit annotations
<body ng-app="MyApp" ng-strict-di>
 <div ng-controller="MyController">
 <p>absUrl: {{absUrl}} </p>
 <p>protocol: {{protocol}}</p>
 </div>

 <script>
 var myApp = angular.module('MyApp', []);

 myApp.controller('MyController', ['$scope', '$location', function ($scope, $location) {
 $scope.absUrl = $location.absUrl();
 $scope.protocol = $location.protocol();
 }]);
 </script>
</body>

16

Service Injection Example

“currencyConverter”
custom service is
created

“currencyConverter”
custom service is
injected into
“InvoiceController”

17

Lab:Lab:

Exercise 2: Dependency InjectionExercise 2: Dependency Injection
3305_angularjs_05_services_and_di.zip3305_angularjs_05_services_and_di.zip

Creating a Custom ServiceCreating a Custom Service

19

Why Create a Custom Service?
• If you have business logic that could be used in multiple places,

you should create a service
> Increases encapsulation
> Increases reusability

• If you need to manipulate data, you should create a service
> Controller should not directly manipulate data

20

How to Create a Custom Service
• By registering the service's name and service factory function by

using module.factory(..) method

• The service factory function generates either a JavaScript object or
a function object that represents the service to the rest of the
application
> In other words, a service can be a JavaScript object or a function

object (well.. technically a function object is also a JavaScript object)
myModule.factory('myService1', function() {
 // return JavaScript object or function object
});

• The service can then be injected into any component (controller,
service, filter or directive) that specifies a dependency on the
service

21

Register Service Name & Factory
• Note that you are not registering a service instance, but rather a factory

function that will create the instance when called - this enables lazy
instantiation of service object - if it is not needed, it will not be created
var myModule = angular.module('myModule', []);

// The returned service object is JavaScript object
myModule.factory('myService1', function() {
 var shinyNewServiceInstance;
 // factory function body that constructs shinyNewServiceInstance
 return shinyNewServiceInstance;
});

// The returned service object is a function object
myModule.factory('myService1', function() {
 return function () {
 };
});

22

Usage of a Service
• A service is then injected into Controller, another Service, etc and

then used
// Define “MyCompute” service
app.factory("MyCompute", function () {
 return {
 add: function (x, y) {
 return x + y;
 }
 }
});

// "MyCompute" service is injected into "MyController"
app.controller("MyController", function ($scope, MyCompute) {
 $scope.addResult = MyCompute.add(50, 30);
});

23

Lab:Lab:

Exercise 3: Create custom services Exercise 3: Create custom services
3305_angularjs_05_services_and_di.zip3305_angularjs_05_services_and_di.zip

• Specialist onsite training in Linux, Cloud, Database, Architecture, Software and
Web Development Technologies

• Accredited by the LPI, CompTIA, Hortonworks and the Cloud Credential Council to
deliver training, examinations and certifications.

• Over 230 courses available

• All GuruTeam instructors have extensive real-world experience in their technologies

• Clients are indigenous Irish Companies and Multinationals

• We can bring high spec preconfigured equipment for deliveries in Ireland, the UK
and Europe.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

