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Topics
• What is and why service?

• Built-in (Angular provided) services
> $log, $location, $timeout, $interval

• Dependency injection (DI)

• Creating a custom service



  What is and Why Service?What is and Why Service?
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What is and Why Service?
• Angular services are reusable objects

> You can use services to organize and share code across your app

• A service can be injected into controller, another service, filter, 
directive that depends on that service
> Angular's dependency injection subsystem  ($injector) handles 

dependency injection

• Angular services are:
> Lazily instantiated – Angular only instantiates a service when an 

application component depends on it
> Singletons – Each component dependent on a service gets a 

reference to the single instance generated by the service factory
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Angular has many built-in services
• Angular offers several useful services (like $http), but for most 

applications you'll also want to create your own
> Like other core Angular identifiers, built-in services always start with $ 

(e.g. $http)

• https://docs.angularjs.org/api/ng/service
> $animate, $controller, $document, $exceptionHandler
> $filter, $http, $interval, $locale, $location
> $log, $parse, $q, $rootElement, $rootScope
> $timeout, $window

https://docs.angularjs.org/api/ng/service


Built-in Services:Built-in Services:
$log service, $log service, 
$location service,$location service,
$Timeout service,$Timeout service,
$Interval service$Interval service
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$log service
• Simple service for logging

• Default implementation writes the message into the browser's 
console

angular.module('logExample', [])
.controller('LogController', ['$scope', '$log', function($scope, $log) {
  $scope.$log = $log;
  $scope.message = 'Hello World!';
}]);
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$location service (getter & setter)
• Is used to both get location data and set location data

> Getter: The $location service parses the URL in the browser address 
bar (based on the window.location) and makes the URL available to 
your application

> Setter: Changes to the URL in the address bar are reflected into 
$location service and changes to $location are reflected into the 
browser address bar

myApp.controller('MyController', ['$scope', '$location', function ($scope, $location) {
    // given url http://example.com/#/some/path?foo=bar&baz=xoxo
    $scope.absUrl = $location.absUrl();  // getter example
    // => "http://example.com/#/some/path?foo=bar&baz=xoxo"

    $scope.setpath = function (path) {
         $location.path(path);                     // setter example
    }
}]);
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$timeout service 
• $timeout service is Angular's wrapper for window.setTimeout

myApp.controller('MyController', ['$scope', '$timeout', function ($scope, $timeout) {
            $scope.timeout = function (duration) {
                $scope.duration = duration;
                $timeout(callTimeout, duration);
            }

            function callTimeout() {
                $scope.message = "Timeout occurred in " + $scope.duration / 1000 + " 
seconds";
            }
}]);
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$interval service 
• Used to rigger any functions scheduled to run in that time.

myApp.controller('MyController', ['$scope', '$interval', function ($scope, $interval) {
            …

            $scope.callAtInterval = function (duration) {
                $interval(callTimeout, duration);
                $scope.duration = duration;
            }

            function callTimeout() {
                $scope.totalDurationInSeconds += $scope.duration / 1000;
                $scope.messages.push("Timeout occurred in " + 
$scope.totalDurationInSeconds + " seconds");
            }
}]);
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Lab:Lab:

Exercise 1: $log, $location, Exercise 1: $log, $location, 
$timeout, $interval services$timeout, $interval services

3305_angularjs_05_services_and_di.zip3305_angularjs_05_services_and_di.zip



Dependency InjectionDependency Injection
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What is and Why DI?
• Dependency Injection (DI) is a software design pattern that deals 

with how components get hold of their dependencies
> The component can have the dependency passed to it where it is 

needed -  it removes the responsibility of locating the dependency 
from the component. The dependency is simply handed to the 
component

> Simpler to code and test

• Dependency injection helps to make your web applications both 
well-structured (e.g. separate entities for presentation, data, and 
control) and loosely coupled
> Dependencies between entities are not resolved by the entities 

themselves, but by the DI subsystem
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Injection Syntax
• Implicit annotation 

> The simplest way to get hold of the dependencies is to assume that 
the function parameter names are the names of the dependencies 

> Downside of this approach - If you plan to minify your code, your 
service names will get renamed and break your app

myModule.controller('MyController', function($scope, greeter) {
  // ...
});

• Inline array annotation (preferred)
> In order to avoid the minification problem of implicit annotation 

scheme, you can specify the dependencies explicitly
someModule.controller('MyController', ['$scope', 'greeter', function($scope, greeter) {
  // ...
}]);
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Using Strict Dependency Injection
• Add an ng-strict-di directive on the same element as ng-app to opt 

into strict DI mode - Strict mode throws an error whenever a service 
tries to use implicit annotations
<body ng-app="MyApp" ng-strict-di>
    <div ng-controller="MyController">
       <p>absUrl: {{absUrl}} </p>
       <p>protocol: {{protocol}}</p>
    </div>

    <script>
    var myApp = angular.module('MyApp', []);

     myApp.controller('MyController', ['$scope', '$location', function ($scope, $location) {
         $scope.absUrl = $location.absUrl();
         $scope.protocol = $location.protocol();
     }]);
    </script>
</body>
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Service Injection Example

“currencyConverter”
custom service is 
created

“currencyConverter”
custom service is 
injected into 
“InvoiceController”
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Lab:Lab:

Exercise 2: Dependency InjectionExercise 2: Dependency Injection
3305_angularjs_05_services_and_di.zip3305_angularjs_05_services_and_di.zip



Creating a Custom ServiceCreating a Custom Service
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Why Create a Custom Service?
• If you have business logic that could be used in multiple places, 

you should create a service
> Increases encapsulation 
> Increases reusability

• If you need to manipulate data, you should create a service
> Controller should not directly manipulate data
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How to Create a Custom Service
• By registering the service's name and service factory function by 

using module.factory(..) method 

• The service factory function generates either a JavaScript object or 
a function object that represents the service to the rest of the 
application
> In other words, a service can be a JavaScript object or a function 

object (well.. technically a function object is also a JavaScript object)
myModule.factory('myService1', function() {
     // return JavaScript object or function object
});

• The service can then be injected into any component (controller, 
service, filter or directive) that specifies a dependency on the 
service
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Register Service Name & Factory
• Note that you are not registering a service instance, but rather a factory 

function that will create the instance when called - this enables lazy 
instantiation of service object - if it is not needed, it will not be created
var myModule = angular.module('myModule', []);

// The returned service object is JavaScript object
myModule.factory('myService1', function() {
     var shinyNewServiceInstance;
     // factory function body that constructs shinyNewServiceInstance
     return shinyNewServiceInstance;
});

// The returned service object is a function object
myModule.factory('myService1', function() {
     return function () {
     };
});
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Usage of a Service
• A service is then injected into Controller, another Service, etc and 

then used
// Define “MyCompute” service
app.factory("MyCompute", function () {
    return {
       add: function (x, y) {
                  return x + y;
               }
    }
});

// "MyCompute" service is injected into "MyController"
app.controller("MyController", function ($scope, MyCompute) {
    $scope.addResult = MyCompute.add(50, 30);
});
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Lab:Lab:

Exercise 3: Create custom services Exercise 3: Create custom services 
3305_angularjs_05_services_and_di.zip3305_angularjs_05_services_and_di.zip



• Specialist onsite training in Linux, Cloud, Database, Architecture, Software and 
Web  Development Technologies

• Accredited by the LPI, CompTIA, Hortonworks and the Cloud Credential Council to 
deliver training, examinations and certifications.

• Over 230 courses available

• All GuruTeam instructors have extensive real-world experience in their technologies 

• Clients are indigenous Irish Companies and Multinationals

• We can bring high spec preconfigured equipment for deliveries in Ireland, the UK 
and Europe.
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