
1

Ruby Ruby
Meta-ProgrammingMeta-Programming

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”

1

2

Topics

• What is and Why Meta-programming?

• Ruby language characteristics (that make it a great meta-
programming language)

• Object#respond_to?

• Object#send

• Dynamic typing (and Duck typing)

• missing_method

• define_method

What is Meta-What is Meta-
Programming?Programming?

4

What is Meta-Programming?

• Meta-programming is the writing of computer programs that
write or manipulate other programs (or even themselves) as
their data

5

Why Meta-Programming?

• Provides higher-level abstraction of logic
> Easier to write code
> Easier to read code

• Meta-programming feature of Ruby language is what makes
Rails a killer application
> For example, the dynamic finders in Rails such as

"find_by_name", "find_by_name_and_hobby" are possible
because of the Meta-programming feature of Ruby language

Ruby Language Ruby Language
CharacteristicsCharacteristics
that Make It a Greatthat Make It a Great
Meta-Programming Meta-Programming
LanguageLanguage

7

Ruby Language Characteristics

• Classes are open

• Class definitions are executable code

• Every method call has a receiver

• Classes themselves are objects

source: http://www.infoq.com/presentations/metaprogramming-ruby

8

Classes Are Open

• Unlike Java and C++, in Ruby, during runtime, methods and
variables can be added to a class (including built-in core classes
provided by Ruby such as String and Fixnum)

define a new method called encrypt for String class
class String
 def encrypt
 tr "a-z","b-za"
 end
end

puts "cat"
puts "cat".encrypt

9

Classes Are Open

• Benefits
> Applications can be written in higher level abstraction
> More readable code
> Less coding

• How it is used in Rails
> Anyone can open up Rails classes and add new features (mostly

methods) to them to suit their needs

10

Class Definitions are Executable Code

• Class definition is basically creating a new Class object during
runtime
> “class” is actually a method of Class class

The log(msg) method is defined differently during runtime
class Logger
 if ENV['DEBUG']
 def log(msg)
 STDERR.puts "LOG: " + msg
 end
 else
 def log(msg)
 end
 end
end

11

Classes Are Objects

• String class is an instance of Class class in the same way
Fixnum class (or Person class) is an instance of Class class

class Person

 puts self # Person
 puts self.class # Class

 def self.my_class_method
 puts "This is my own class method"
 end

end

12

Lab:Lab:
Exercise 0: Ruby classesExercise 0: Ruby classes

5511_ruby_meta.zip5511_ruby_meta.zip

Object#respond_to?Object#respond_to?

14

What is Introspection?

• Being able to find information on an object during runtime

• Examples
> Object#class
> Object#methods
> Object#class.superclass
> Object#class.ancestors
> Object#private_methods
> Object#public_methods
> ...

15

respond_to? method

• A method in the “Class” object

• Returns "true" if obj responds to the given method, in other
words, if the class of the object has the given method

class Hello
 def myhellomethod(name)
 end
end

hello_instance = Hello.new
puts hello_instance.respond_to?(:myhellomethod) # true

16

Lab:Lab:
Exercise 1: Object#respond_to?Exercise 1: Object#respond_to?

5511_ruby_meta.zip5511_ruby_meta.zip

Object#sendObject#send
Method ClassMethod Class

18

Method Invocation in Ruby

• Calling a method directly by name is allowed as we know of
> an_object_instance.hello(“Good morning!”)

• It is also possible to call a method through send(..) passing
string, symbol, or variable as the name of the method
> an_object_instance.send(“my_method”, args)
> an_object_instance.send(:my_method, args)
> amethod = :my_method
> an_object_instance.send(”#{amethod}”, args)

• This allows calling different method during runtime depending
on business logic, time of the day, etc
> Example: I want to call “handle_good_customer()” for a good

customer and “handle_bad_customer() for a bad customer

19

Example: obj.send(symbol [, args...])

• Invokes the method identified by symbol (or string), passing it any
arguments specified.

class Klass
 def hello(*args)
 "Hello " + args.join(' ')
 end
end

k = Klass.new

The following statements are equivalent
puts k.hello("gentle", "readers") #=> "Hello gentle readers"
puts k.hello "gentle", "readers" #=> "Hello gentle readers"
puts k.send(“hello”, "gentle", "readers") #=> "Hello gentle readers"
puts k.send “hello”, "gentle", "readers" #=> "Hello gentle readers"
puts k.send(:hello, "gentle", "readers") #=> "Hello gentle readers"
puts k.send :hello, "gentle", "readers" #=> "Hello gentle readers"

20

Method Class

• Method object represents a method

• You can invoke the method by invoking “call” method of the Method
object

length_method = "Random text".method(:length)
p length_method.class # Method
p length_method.call # 11

21

Lab:Lab:
Exercise 2: Object#send Exercise 2: Object#send

5511_ruby_meta.zip5511_ruby_meta.zip

Dynamic TypingDynamic Typing
(and Duck Typing)(and Duck Typing)

23

What is Dynamic Typing?

• A programming language is said to use dynamic typing when
type checking is performed at run-time (also known as "late-
binding") as opposed to compile-time

• Examples of languages that use dynamic typing include
> Ruby, PHP, Lisp, Perl, Python, and Smalltalk

24

What is Duck Typing?

• Duck typing is a style of dynamic typing in which an object's
current set of methods and properties determines the valid
semantics, rather than its inheritance from a particular class

• The name of the concept refers to the duck test, attributed to
James Whitcomb Riley, which may be phrased as “If it walks
like a duck and quacks like a duck, I would call it a duck”.

25

Duck Typing Example (page 1)

The Duck class
class Duck
 def quack
 puts "Duck is quacking!"
 end
end

The Mallard class
class Mallard
 def quack
 puts "Mallard is quacking!"
 end
end

26

Duck Typing Example (page 2)

If it quacks like a duck, it must be duck
def quack_em(ducks)
 ducks.each do |duck|
 if duck.respond_to? :quack
 duck.quack
 end
 end
end

birds = [Duck.new, Mallard.new, Object.new]

puts "----Call quack method for each item of the birds array. Only Duck and Mallard
should be quacking."

quack_em(birds)

27

Lab:Lab:
Exercise 3: Dynamic Typing (Duck Typing)Exercise 3: Dynamic Typing (Duck Typing)

5511_ruby_meta.zip5511_ruby_meta.zip

missing_methodmissing_method

29

NoMethodError Exception

• If a method that is not existent in a class is invoked,
NoMethodError exception will be generated

Let's say we defined Dummy class
class Dummy
end

puts "----Call a method that does not exist in the Dummy class
and expect NoMethodError exception."

dummy = Dummy.new
dummy.call_a_method_that_does_not_exist

30

method_missing Method

• If method_missing(m, *args) method is defined in a class,
however, it will be called (instead of NoMethodError exception
being generated) when a method that does not exist is invoked

class Dummy
 def method_missing(a_method, *args)
 puts "There's no method called #{a_method} here -- so

method_missing method is called."
 puts " with arguments #{args}"
 end
end

dummy = Dummy.new
dummy.a_method_that_does_not_exist

31

How method_missing Method is used
in Rails
• Rails' find_by_xxxx() finder method is implemented through

method_missing.

class Finder
 def find(name)
 # Rails (actually ActiveRecord) constructs a find() method with correct
 # set of parameters
 puts "find(#{name}) is called"
 end

 def method_missing(name, *args)
 # code to handle the finder logic
 end
end

f = Finder.new
f.find("Something")
f.find_by_last_name("Shin")
f.find_by_title("Technology Architect")

32

Lab:Lab:
Exercise 4: Missing MethodExercise 4: Missing Method

5511_ruby_meta.zip5511_ruby_meta.zip

define_methoddefine_method

34

define_method

• The define_method defines an instance method in the receiver.
 define_method(symbol, method)
 define_method(symbol) { block }

• The method parameter can be a Proc or Method object
> If a block is specified, it is used as the method body

35

define_method

• An example of define_method(symbol) { block }

class Love
 define_method(:my_hello) do |arg1, arg2|
 puts "#{arg1} loves #{arg2}"
 end
end

love = Love.new
my_hello is a method to call
love.my_hello("Barbara", "John")

36

Lab:Lab:
Exercise 5: “define_method”Exercise 5: “define_method”

5511_ruby_meta.zip5511_ruby_meta.zip

37

Code with Passion!Code with Passion!
JPassion.comJPassion.com

37

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

