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Topics

• What is and Why Meta-programming?

• Ruby language characteristics (that make it a great meta-
programming language)

• Object#respond_to?

• Object#send

• Dynamic typing (and Duck typing)

• missing_method

• define_method
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What is Meta-Programming?

• Meta-programming is the writing of computer programs that 
write or manipulate other programs (or even themselves) as 
their data
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Why Meta-Programming?

• Provides higher-level abstraction of logic
> Easier to write code
> Easier to read code

• Meta-programming feature of Ruby language is what makes 
Rails a killer application
> For example, the dynamic finders in Rails such as 

"find_by_name", "find_by_name_and_hobby" are possible 
because of the Meta-programming feature of Ruby language 
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Ruby Language Characteristics

• Classes are open

• Class definitions are executable code

• Every method call has a receiver

• Classes themselves are objects

source: http://www.infoq.com/presentations/metaprogramming-ruby
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Classes Are Open

• Unlike Java and C++, in Ruby, during runtime, methods and 
variables can be added to a class (including built-in core classes 
provided by Ruby such as String and Fixnum)  

# define a new method called encrypt for String class
class String
  def encrypt
    tr "a-z","b-za"
  end
end

puts "cat"
puts "cat".encrypt
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Classes Are Open

• Benefits
> Applications can be written in higher level abstraction
> More readable code
> Less coding

• How it is used in Rails
> Anyone can open up Rails classes and add new features (mostly 

methods) to them to suit their needs
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Class Definitions are Executable Code

• Class definition is basically creating a new Class object during 
runtime
> “class” is actually a method of Class class

# The log(msg) method is defined differently during runtime
class Logger
  if ENV['DEBUG']
    def log(msg)
      STDERR.puts "LOG: " + msg
    end
  else
    def log(msg)
    end
  end
end
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Classes Are Objects

• String class is an instance of Class class in the same way 
Fixnum class (or Person class) is an instance of Class class

class Person
 
  puts self            # Person
  puts self.class   # Class 
  
  def self.my_class_method
    puts "This is my own class method"
  end
 
end
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Lab:Lab:
Exercise 0: Ruby classesExercise 0: Ruby classes

5511_ruby_meta.zip5511_ruby_meta.zip
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What is Introspection?

• Being able to find information on an object during runtime

• Examples
> Object#class
> Object#methods
> Object#class.superclass
> Object#class.ancestors
> Object#private_methods
> Object#public_methods
> ...
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respond_to? method

• A method in the “Class” object

• Returns "true" if obj responds to the given method, in other 
words, if the class of the object has the given method

class Hello 
  def myhellomethod(name)
  end
end

hello_instance = Hello.new
puts hello_instance.respond_to?(:myhellomethod)  # true
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Lab:Lab:
Exercise 1: Object#respond_to?Exercise 1: Object#respond_to?

5511_ruby_meta.zip5511_ruby_meta.zip
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Method Invocation in Ruby

• Calling a method directly by name is allowed as we know of
> an_object_instance.hello(“Good morning!”)

• It is also possible to call a method through send(..) passing 
string, symbol, or variable as the name of the method
> an_object_instance.send(“my_method”, args)
> an_object_instance.send(:my_method, args)
> amethod = :my_method
> an_object_instance.send(”#{amethod}”, args) 

• This allows calling different method during runtime depending 
on business logic, time of the day, etc
> Example: I want to call “handle_good_customer()” for a good 

customer and “handle_bad_customer() for a bad customer
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Example: obj.send(symbol [, args...])

• Invokes the method identified by symbol (or string), passing it any 
arguments specified. 

class Klass
  def hello(*args)
    "Hello " + args.join(' ')
  end
end

k = Klass.new

# The following statements are equivalent
puts k.hello("gentle", "readers")             #=> "Hello gentle readers"
puts k.hello "gentle", "readers"              #=> "Hello gentle readers"
puts k.send(“hello”, "gentle", "readers")  #=> "Hello gentle readers"
puts k.send “hello”, "gentle", "readers"   #=> "Hello gentle readers"
puts k.send(:hello, "gentle", "readers")  #=> "Hello gentle readers"
puts k.send :hello, "gentle", "readers"   #=> "Hello gentle readers"
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Method Class

• Method object represents a method

• You can invoke the method by invoking “call” method of the Method 
object

length_method = "Random text".method(:length)
p length_method.class # Method
p length_method.call # 11
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Lab:Lab:
Exercise 2: Object#send Exercise 2: Object#send 

5511_ruby_meta.zip5511_ruby_meta.zip
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What is Dynamic Typing?

• A programming language is said to use dynamic typing when 
type checking is performed at run-time (also known as "late-
binding") as opposed to compile-time

• Examples of languages that use dynamic typing include 
> Ruby, PHP, Lisp, Perl, Python, and Smalltalk 
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What is Duck Typing?

• Duck typing is a style of dynamic typing in which an object's 
current set of methods and properties determines the valid 
semantics, rather than its inheritance from a particular class

• The name of the concept refers to the duck test, attributed to 
James Whitcomb Riley, which may be phrased as “If it walks 
like a duck and quacks like a duck, I would call it a duck”. 
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Duck Typing Example (page 1)

# The Duck class
class Duck
  def quack
    puts "Duck is quacking!"
  end
end

# The Mallard class
class Mallard
  def quack
    puts "Mallard is quacking!"
  end
end
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Duck Typing Example (page 2)

# If it quacks like a duck, it must be duck
def quack_em(ducks)
  ducks.each do |duck|
    if duck.respond_to? :quack
       duck.quack
    end
  end
end

birds = [Duck.new, Mallard.new, Object.new]

puts "----Call quack method for each item of the birds array. Only Duck and Mallard 
should be quacking."

quack_em(birds)
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Lab:Lab:
Exercise 3: Dynamic Typing (Duck Typing)Exercise 3: Dynamic Typing (Duck Typing)

5511_ruby_meta.zip5511_ruby_meta.zip
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NoMethodError Exception

• If a method that is not existent in a class is invoked, 
NoMethodError exception will be generated

# Let's say we defined Dummy class 
class Dummy
end 

puts "----Call a method that does not exist in the Dummy class 
and expect NoMethodError exception."

dummy = Dummy.new
dummy.call_a_method_that_does_not_exist
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method_missing Method

• If method_missing(m, *args) method is defined in a class, 
however, it will be called (instead of NoMethodError exception 
being generated) when a method that does not exist is invoked

class Dummy 
  def method_missing(a_method, *args) 
    puts "There's no method called #{a_method} here -- so  

method_missing method is called."
    puts "   with arguments #{args}"   
  end 
end 

dummy = Dummy.new
dummy.a_method_that_does_not_exist
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How method_missing Method is used 
in Rails
• Rails' find_by_xxxx() finder method is implemented through 

method_missing.

class Finder 
  def find(name) 
   # Rails (actually ActiveRecord) constructs a find() method with correct 
   # set of  parameters
    puts "find(#{name}) is called"
  end 
 
  def method_missing(name, *args)
     # code to handle the finder logic
  end
end

f = Finder.new
f.find("Something")
f.find_by_last_name("Shin")
f.find_by_title("Technology Architect")
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Lab:Lab:
Exercise 4: Missing MethodExercise 4: Missing Method

5511_ruby_meta.zip5511_ruby_meta.zip
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define_method

• The define_method defines an instance method in the receiver. 
     define_method(symbol, method)     
     define_method(symbol) { block }     

• The method parameter can be a Proc or Method object
> If a block is specified, it is used as the method body
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define_method

• An example of define_method(symbol) { block }    

class Love
  define_method(:my_hello) do |arg1, arg2|
    puts "#{arg1} loves #{arg2}"
  end
end

love = Love.new
# my_hello is a method to call
love.my_hello("Barbara", "John")
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Lab:Lab:
Exercise 5: “define_method”Exercise 5: “define_method”

5511_ruby_meta.zip5511_ruby_meta.zip
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