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Topics

• Advanced field modifiers
> AUTO_INCREMENT
> INDEX
> UNIQUE

• Table modifiers
> Storage Engine
> Other modifiers

• WHERE clause options
• GROUP BY and HAVING
• User-defined variables
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Advanced Field Modifiers
• AUTO_INCREMENT
> MySQL automatically generates a number (by incrementing 

the previous value by 1)
> Used for creating primary key automatically

• INDEX
> Index a field
> When a field is indexed, MySQL no longer has to scan the 

whole table, instead uses the index to locate the record(s)
> Performance booster

• UNIQUE
> The value has to be unique



5

AUTO_INCREMENT
/* Create "employees" table */
DROP TABLE IF EXISTS employees; 
 
CREATE TABLE employees ( 
    /* If value of this field is not provided, one will be created by MySQL */
    employee_id int(11) NOT NULL AUTO_INCREMENT,
    name varchar(255) NOT NULL,
    salary decimal(7,2) NOT NULL, 
    PRIMARY KEY  (employee_id)
);

/* Data for the table employees - providing employee_id explicitly  */
INSERT INTO employees(employee_id, name, salary)
VALUES
(1,'jack','3000.00'),
(2,'mary','2500.00'),
(3,'nichole','4000.00');

/* Data for the table employees - using AUTO_INCREMENT */
INSERT INTO employees(name, salary)
VALUES
('angie','5000.00'),
('jones','5000.00');
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INDEX constraint
CREATE TABLE employees ( 
    employee_id int(11) NOT NULL AUTO_INCREMENT,
    name varchar(255) NOT NULL UNIQUE,
    department varchar(255) NOT NULL, 
    salary decimal(7,2) NOT NULL, 
    PRIMARY KEY  (employee_id),
    INDEX (department)
);
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UNIQUE constraint
CREATE TABLE employees ( 
    employee_id int(11) NOT NULL AUTO_INCREMENT,
    /* name field now has UNIQUE constraint */
    /* every name in this field has to be unique */
    name varchar(255) NOT NULL UNIQUE,
    salary decimal(7,2) NOT NULL, 
    PRIMARY KEY  (employee_id)
);

/* Data for the table employees - using AUTO_INCREMENT */
INSERT INTO employees(name, salary)
VALUES
('angie','5500.00'),
('jones','5000.00'),
('jones','4000.00');  /* This should result in an error */
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Demo:Demo:

Exercise 1: Field ModifiersExercise 1: Field Modifiers
1611_mysql_basics2.zip1611_mysql_basics2.zip
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What is a Storage Engine?

• A "storage engine" is the underlying software 
component that a database management system 
(DBMS) uses for performing database operations

• Represents table type
> A table is associated with a particular storage engine
> A table is either created with a particular storage engine or 

altered to a different storage engine
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Storage Engines

• MySQL support a set of storage engines based on 
pluggable storage engine architecture

• Each storage engine has its own advantages and 
disadvantages
> Choosing a wrong one might cause performance drag

• Different storage engines can be assigned to different 
tables in a single database
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Factors to consider when choosing a 
Storage engine for a table 
• Frequency of reads vs. writes
> MyISAM would be better choice if the table access is mostly 

reads (SELECT)

• Whether transactional support is needed or not
> Only InnoDB supports transactional behavior

• Indexing requirement
• OS portability
• Future extensibility and changeability
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Storage Engines in MySQL

• InnoDB
> InnoDB is a transaction-safe (ACID compliant) storage 

engine for MySQL that has commit, rollback, and crash-
recovery capabilities to protect user data

> Default
• MyISAM
> It is based on the older ISAM code but has many useful 

extensions
• MRG_MYISAM
> Is a collection of identical MyISAM tables that can be 

used as one.
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Storage Engines

• FEDERATED
> Enables data located on a remote MySQL database can be 

accessed through local server 
• ARCHIVE
> Used for storing large amounts of data without indexes in a 

very small footprint. 
• CSV
> Stores data in text files using comma-separated values 

format. 
• BLACKHOLE
> Acts as a “black hole” that accepts data but throws it away 

and does not store it.
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Storage Engines

• MRG_MYISAM
> Is a collection of identical MyISAM tables that can be 

used as one.
• MEMORY (HEAP)
> Hash based, stored in memory, useful for temporary 

tables
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Creating a table with ENGINE
mysql> CREATE TABLE  t1_InnoDB (id int) ENGINE = InnoDB;
Query OK, 0 rows affected (0.18 sec)

mysql> CREATE TABLE  t2_MyISAM (id int) ENGINE = MyISAM;
Query OK, 0 rows affected (0.07 sec)

// Create a table with a default storage engine
mysql> CREATE TABLE  t3_default (id int);
Query OK, 0 rows affected (0.13 sec)
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Table Modifiers

• AUTO_INCREMENT
> Specifies the starting value of the AUTO_INCREMENT field

• CHARACTER SET, COLLATE
> Specifies the table character set and collation

• CHECKSUM
> Specifies whether the table checksum should be computed 

and stored

• MAX_ROWS, MIN_ROWS
> Specifies the maximum and minimum number of rows a table 

can have
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Table Modifiers (Continued)

• PACK_KEYS
> Specifies whether indexes should be compressed or not

• DELAY_KEY_WRITE
> Specifies whether indexes should be updated only after all 

writes to the table are complete
> Can improve performance for tables with high frequency of 

writes

• DATA DIRECTORY
> Specifies non-default data directory

• INDEX DIRECTORY
> Specifies non-default index directory
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Demo:Demo:

Exercise 2: Table ModifiersExercise 2: Table Modifiers
1611_mysql_basics2.zip1611_mysql_basics2.zip
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Comparison Operators in WHERE

• =,>,<,.>=,<=,<>

SELECT * FROM employees

WHERE salary > 3500;
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Logical Operators in WHERE

• AND, OR, NOT

SELECT * FROM employees

WHERE (department_id = 1 AND NOT name = 'nichole')

      OR salary > 4500;
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BETWEEN
SELECT * FROM employees
WHERE salary BETWEEN 2000 AND 4000;
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IN
SELECT * FROM employees
WHERE name IN ('nichole', 'jack');
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LIKE
SELECT * FROM employees
WHERE name LIKE '%n%';

SELECT * FROM employees
WHERE name LIKE '%e';
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Regular Expression
/* Get all records whose name is either 'jones' or 'mary' */
SELECT * FROM employees
WHERE name REGEXP 'jones|mary';

/* Get all records whose name starts with 'j' */
SELECT * FROM employees
WHERE name REGEXP '^j';

/* Get all records whose name ends with 'e' */
SELECT * FROM employees
WHERE name REGEXP 'e$';
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DISTINCT
SELECT DISTINCT salary FROM employees;
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Demo:Demo:

Exercise 3: Where ClauseExercise 3: Where Clause
1611_mysql_basics2.zip1611_mysql_basics2.zip



GROUP BY and GROUP BY and 
HAVINGHAVING

 



31

GROUP BY

• Returns group of rows
• Divides a table into sets and it is usually used with SQL 

aggregate functions, like COUNT(..), which produces 
summary value for each set 
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GROUP BY Example
/* Data for the table employees */
INSERT INTO employees(name, salary, department_id) VALUES
('jack','3000.00', 1),
('mary','2500.00', 2),
('nichole','4000.00', 1),
('angie','5000.00', 2),
('jones','5000.00', 3);

/* Get number of employees for each department using GROUP BY */
SELECT department_id, COUNT(employee_id) AS employee_count
FROM employees
GROUP BY department_id;

+-------------------+----------------- ----+
| department_id | employee_count |
+-----------==----+-----===-----------+
|                      1 |                         2 |
|                      2 |                         2 |
|                      3 |                         1 |
+-------------------+----------------------+
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HAVING

• HAVING clause is like a WHERE clause for groups. 
> Just as WHERE clause limits rows, HAVING clause limits 

groups. 

• In most programming contexts, you will use HAVING 
clause after GROUP BY clause to limit groups by 
searched conditions.
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HAVING Example
/* Data for the table employees */
INSERT INTO employees(name, salary, department_id) VALUES
('jack','3000.00', 1),
('mary','2500.00', 2),
('nichole','4000.00', 1),
('angie','5000.00', 2),
('jones','5000.00', 3);

/* Get number of employees for each department using GROUP BY &
 * the number of employees are greater than or equal to 2. */
SELECT department_id, COUNT(employee_id) AS employee_count
FROM employees
GROUP BY department_id
HAVING employee_count >= 2;

+-------------------+------------------------+
| department_id | employee_count |
+-------------------+------------------------+
|                      1 |                          2 |
|                      2 |                          2 |
+-------------------+-------------------------+
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Demo:Demo:

Exercise 4: GROUP BY & HAVINGExercise 4: GROUP BY & HAVING
1611_mysql_basics2.zip1611_mysql_basics2.zip



User-defined VariablesUser-defined Variables

 



37

What are User-defined variables?

• You can store a value in a user-defined variable in one 
statement and then refer to it later in another statement
> This enables you to pass values from one statement to 

another

• User-defined variables are connection-specific
> A user variable defined by one client cannot be seen or used 

by other clients
> All variables for a given client connection are automatically 

freed when that client exits.
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How to create user-defined variables

• User variables are written as @var_name

• One way to set a user-defined variable is by issuing a 
SET statement:
> SET @var_name = expr [, @var_name = expr] ...
> For SET, either = or := can be used as the assignment 

operator

• Another way to define a user-defined variable is by 
using SELECT.. INTO
> SELECT .. INTO @var_name
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Setting User-defined Variables with SET
mysql> SET @my_var1 = 10, @my_var2 := 20;
Query OK, 0 rows affected (0.24 sec)

mysql> SELECT @my_var1, @my_var2, @my_var3 := @my_var1 + @my_var2;
+---------------+---------------+-----------------------------------------------------+
| @my_var1 | @my_var2 | @my_var3 := @my_var1 + @my_var2 |
+---------------+---------------+------------------------------------------------------+
|              10 |              20 |                                                        30 |
+---------------+---------------+-----------------------------------------------------+
1 row in set (0.05 sec)

mysql> SET @my_string_var = 'Sang Shin';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT UPPER(@my_string_var), LOWER(@my_string_var);
+-----------------------+-----------------------+
| UPPER(@my_string_var) | LOWER(@my_string_var) |
+-----------------------+-----------------------+
| SANG SHIN             | sang shin             |
+-----------------------+-----------------------+
1 row in set (0.08 sec)
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Setting User-defined Variables with SELECT
mysql> SELECT 67 INTO @my_var4;
Query OK, 1 row affected (0.06 sec)

mysql> SELECT @my_var4;
+----------+
| @my_var4 |
+----------+
|       67 |
+----------+
1 row in set (0.00 sec)

mysql> SELECT @my_var4 + 10 INTO @my_var5;
Query OK, 1 row affected (0.00 sec)

mysql> SELECT @my_var4, @my_var5;
+----------+----------+
| @my_var4 | @my_var5 |
+----------+----------+
|       67 |       77 |
+----------+----------+
1 row in set (0.00 sec)
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Setting User-defined Variables with SELECT
mysql> select name into @first from employees where employee_id =1;
Query OK, 1 row affected (0.00 sec)

mysql> select @first;
+--------+
| @first |
+--------+
| jack   |
+--------+
1 row in set (0.00 sec)

mysql> select sum(salary) from employees into @total;
Query OK, 1 row affected (0.00 sec)

mysql> select @total;
+----------+
| @total   |
+----------+
| 19500.00 |
+----------+
1 row in set (0.00 sec)
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Demo:Demo:

Exercise 5: User Defined VariablesExercise 5: User Defined Variables
1611_mysql_basics2.zip1611_mysql_basics2.zip
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                  Thank you!Thank you!

Sang ShinSang Shin
http://www.JPassion.comhttp://www.JPassion.com
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