
1

MySQL Basics II MySQL Basics II

Sang ShinSang Shin
http://www.JPassion.comhttp://www.JPassion.com

““Learn with JPassion!”Learn with JPassion!”

1

2

Topics

• Advanced field modifiers
> AUTO_INCREMENT
> INDEX
> UNIQUE

• Table modifiers
> Storage Engine
> Other modifiers

• WHERE clause options
• GROUP BY and HAVING
• User-defined variables

Advanced Field ModifersAdvanced Field Modifers

4

Advanced Field Modifiers
• AUTO_INCREMENT
> MySQL automatically generates a number (by incrementing

the previous value by 1)
> Used for creating primary key automatically

• INDEX
> Index a field
> When a field is indexed, MySQL no longer has to scan the

whole table, instead uses the index to locate the record(s)
> Performance booster

• UNIQUE
> The value has to be unique

5

AUTO_INCREMENT
/* Create "employees" table */
DROP TABLE IF EXISTS employees;

CREATE TABLE employees (
 /* If value of this field is not provided, one will be created by MySQL */
 employee_id int(11) NOT NULL AUTO_INCREMENT,
 name varchar(255) NOT NULL,
 salary decimal(7,2) NOT NULL,
 PRIMARY KEY (employee_id)
);

/* Data for the table employees - providing employee_id explicitly */
INSERT INTO employees(employee_id, name, salary)
VALUES
(1,'jack','3000.00'),
(2,'mary','2500.00'),
(3,'nichole','4000.00');

/* Data for the table employees - using AUTO_INCREMENT */
INSERT INTO employees(name, salary)
VALUES
('angie','5000.00'),
('jones','5000.00');

6

INDEX constraint
CREATE TABLE employees (
 employee_id int(11) NOT NULL AUTO_INCREMENT,
 name varchar(255) NOT NULL UNIQUE,
 department varchar(255) NOT NULL,
 salary decimal(7,2) NOT NULL,
 PRIMARY KEY (employee_id),
 INDEX (department)
);

7

UNIQUE constraint
CREATE TABLE employees (
 employee_id int(11) NOT NULL AUTO_INCREMENT,
 /* name field now has UNIQUE constraint */
 /* every name in this field has to be unique */
 name varchar(255) NOT NULL UNIQUE,
 salary decimal(7,2) NOT NULL,
 PRIMARY KEY (employee_id)
);

/* Data for the table employees - using AUTO_INCREMENT */
INSERT INTO employees(name, salary)
VALUES
('angie','5500.00'),
('jones','5000.00'),
('jones','4000.00'); /* This should result in an error */

8

Demo:Demo:

Exercise 1: Field ModifiersExercise 1: Field Modifiers
1611_mysql_basics2.zip1611_mysql_basics2.zip

Table Modifiers:Table Modifiers:
Storage EngineStorage Engine

10

What is a Storage Engine?

• A "storage engine" is the underlying software
component that a database management system
(DBMS) uses for performing database operations

• Represents table type
> A table is associated with a particular storage engine
> A table is either created with a particular storage engine or

altered to a different storage engine

11

Storage Engines

• MySQL support a set of storage engines based on
pluggable storage engine architecture

• Each storage engine has its own advantages and
disadvantages
> Choosing a wrong one might cause performance drag

• Different storage engines can be assigned to different
tables in a single database

12

Factors to consider when choosing a
Storage engine for a table
• Frequency of reads vs. writes
> MyISAM would be better choice if the table access is mostly

reads (SELECT)

• Whether transactional support is needed or not
> Only InnoDB supports transactional behavior

• Indexing requirement
• OS portability
• Future extensibility and changeability

13

Storage Engines in MySQL

• InnoDB
> InnoDB is a transaction-safe (ACID compliant) storage

engine for MySQL that has commit, rollback, and crash-
recovery capabilities to protect user data

> Default
• MyISAM
> It is based on the older ISAM code but has many useful

extensions
• MRG_MYISAM
> Is a collection of identical MyISAM tables that can be

used as one.

14

Storage Engines

• FEDERATED
> Enables data located on a remote MySQL database can be

accessed through local server
• ARCHIVE
> Used for storing large amounts of data without indexes in a

very small footprint.
• CSV
> Stores data in text files using comma-separated values

format.
• BLACKHOLE
> Acts as a “black hole” that accepts data but throws it away

and does not store it.

15

Storage Engines

• MRG_MYISAM
> Is a collection of identical MyISAM tables that can be

used as one.
• MEMORY (HEAP)
> Hash based, stored in memory, useful for temporary

tables

16

Creating a table with ENGINE
mysql> CREATE TABLE t1_InnoDB (id int) ENGINE = InnoDB;
Query OK, 0 rows affected (0.18 sec)

mysql> CREATE TABLE t2_MyISAM (id int) ENGINE = MyISAM;
Query OK, 0 rows affected (0.07 sec)

// Create a table with a default storage engine
mysql> CREATE TABLE t3_default (id int);
Query OK, 0 rows affected (0.13 sec)

Table Modifiers:Table Modifiers:
Misc. ModifiersMisc. Modifiers

18

Table Modifiers

• AUTO_INCREMENT
> Specifies the starting value of the AUTO_INCREMENT field

• CHARACTER SET, COLLATE
> Specifies the table character set and collation

• CHECKSUM
> Specifies whether the table checksum should be computed

and stored

• MAX_ROWS, MIN_ROWS
> Specifies the maximum and minimum number of rows a table

can have

19

Table Modifiers (Continued)

• PACK_KEYS
> Specifies whether indexes should be compressed or not

• DELAY_KEY_WRITE
> Specifies whether indexes should be updated only after all

writes to the table are complete
> Can improve performance for tables with high frequency of

writes

• DATA DIRECTORY
> Specifies non-default data directory

• INDEX DIRECTORY
> Specifies non-default index directory

20

Demo:Demo:

Exercise 2: Table ModifiersExercise 2: Table Modifiers
1611_mysql_basics2.zip1611_mysql_basics2.zip

WHERE Clause OptionsWHERE Clause Options

22

Comparison Operators in WHERE

• =,>,<,.>=,<=,<>

SELECT * FROM employees

WHERE salary > 3500;

23

Logical Operators in WHERE

• AND, OR, NOT

SELECT * FROM employees

WHERE (department_id = 1 AND NOT name = 'nichole')

 OR salary > 4500;

24

BETWEEN
SELECT * FROM employees
WHERE salary BETWEEN 2000 AND 4000;

25

IN
SELECT * FROM employees
WHERE name IN ('nichole', 'jack');

26

LIKE
SELECT * FROM employees
WHERE name LIKE '%n%';

SELECT * FROM employees
WHERE name LIKE '%e';

27

Regular Expression
/* Get all records whose name is either 'jones' or 'mary' */
SELECT * FROM employees
WHERE name REGEXP 'jones|mary';

/* Get all records whose name starts with 'j' */
SELECT * FROM employees
WHERE name REGEXP '^j';

/* Get all records whose name ends with 'e' */
SELECT * FROM employees
WHERE name REGEXP 'e$';

28

DISTINCT
SELECT DISTINCT salary FROM employees;

29

Demo:Demo:

Exercise 3: Where ClauseExercise 3: Where Clause
1611_mysql_basics2.zip1611_mysql_basics2.zip

GROUP BY and GROUP BY and
HAVINGHAVING

31

GROUP BY

• Returns group of rows
• Divides a table into sets and it is usually used with SQL

aggregate functions, like COUNT(..), which produces
summary value for each set

32

GROUP BY Example
/* Data for the table employees */
INSERT INTO employees(name, salary, department_id) VALUES
('jack','3000.00', 1),
('mary','2500.00', 2),
('nichole','4000.00', 1),
('angie','5000.00', 2),
('jones','5000.00', 3);

/* Get number of employees for each department using GROUP BY */
SELECT department_id, COUNT(employee_id) AS employee_count
FROM employees
GROUP BY department_id;

+-------------------+----------------- ----+
| department_id | employee_count |
+-----------==----+-----===-----------+
1	2
2	2
3	1
+-------------------+----------------------+

33

HAVING

• HAVING clause is like a WHERE clause for groups.
> Just as WHERE clause limits rows, HAVING clause limits

groups.

• In most programming contexts, you will use HAVING
clause after GROUP BY clause to limit groups by
searched conditions.

34

HAVING Example
/* Data for the table employees */
INSERT INTO employees(name, salary, department_id) VALUES
('jack','3000.00', 1),
('mary','2500.00', 2),
('nichole','4000.00', 1),
('angie','5000.00', 2),
('jones','5000.00', 3);

/* Get number of employees for each department using GROUP BY &
 * the number of employees are greater than or equal to 2. */
SELECT department_id, COUNT(employee_id) AS employee_count
FROM employees
GROUP BY department_id
HAVING employee_count >= 2;

+-------------------+------------------------+
| department_id | employee_count |
+-------------------+------------------------+
| 1 | 2 |
| 2 | 2 |
+-------------------+-------------------------+

35

Demo:Demo:

Exercise 4: GROUP BY & HAVINGExercise 4: GROUP BY & HAVING
1611_mysql_basics2.zip1611_mysql_basics2.zip

User-defined VariablesUser-defined Variables

37

What are User-defined variables?

• You can store a value in a user-defined variable in one
statement and then refer to it later in another statement
> This enables you to pass values from one statement to

another

• User-defined variables are connection-specific
> A user variable defined by one client cannot be seen or used

by other clients
> All variables for a given client connection are automatically

freed when that client exits.

38

How to create user-defined variables

• User variables are written as @var_name

• One way to set a user-defined variable is by issuing a
SET statement:
> SET @var_name = expr [, @var_name = expr] ...
> For SET, either = or := can be used as the assignment

operator

• Another way to define a user-defined variable is by
using SELECT.. INTO
> SELECT .. INTO @var_name

39

Setting User-defined Variables with SET
mysql> SET @my_var1 = 10, @my_var2 := 20;
Query OK, 0 rows affected (0.24 sec)

mysql> SELECT @my_var1, @my_var2, @my_var3 := @my_var1 + @my_var2;
+---------------+---------------+---+
| @my_var1 | @my_var2 | @my_var3 := @my_var1 + @my_var2 |
+---------------+---------------+--+
| 10 | 20 | 30 |
+---------------+---------------+---+
1 row in set (0.05 sec)

mysql> SET @my_string_var = 'Sang Shin';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT UPPER(@my_string_var), LOWER(@my_string_var);
+-----------------------+-----------------------+
| UPPER(@my_string_var) | LOWER(@my_string_var) |
+-----------------------+-----------------------+
| SANG SHIN | sang shin |
+-----------------------+-----------------------+
1 row in set (0.08 sec)

40

Setting User-defined Variables with SELECT
mysql> SELECT 67 INTO @my_var4;
Query OK, 1 row affected (0.06 sec)

mysql> SELECT @my_var4;
+----------+
| @my_var4 |
+----------+
| 67 |
+----------+
1 row in set (0.00 sec)

mysql> SELECT @my_var4 + 10 INTO @my_var5;
Query OK, 1 row affected (0.00 sec)

mysql> SELECT @my_var4, @my_var5;
+----------+----------+
| @my_var4 | @my_var5 |
+----------+----------+
| 67 | 77 |
+----------+----------+
1 row in set (0.00 sec)

41

Setting User-defined Variables with SELECT
mysql> select name into @first from employees where employee_id =1;
Query OK, 1 row affected (0.00 sec)

mysql> select @first;
+--------+
| @first |
+--------+
| jack |
+--------+
1 row in set (0.00 sec)

mysql> select sum(salary) from employees into @total;
Query OK, 1 row affected (0.00 sec)

mysql> select @total;
+----------+
| @total |
+----------+
| 19500.00 |
+----------+
1 row in set (0.00 sec)

42

Demo:Demo:

Exercise 5: User Defined VariablesExercise 5: User Defined Variables
1611_mysql_basics2.zip1611_mysql_basics2.zip

43

 Thank you!Thank you!

Sang ShinSang Shin
http://www.JPassion.comhttp://www.JPassion.com

““Learn with JPassion!”Learn with JPassion!”

43

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

