
1

 HTML5 Offline StorageHTML5 Offline Storage

Sang ShinSang Shin
Founder & Chief InstructorFounder & Chief Instructor

JPassion.comJPassion.com
““Learn with Passion!”Learn with Passion!”

1

2

Topics
• Offline web applications

• HTML5 Offline storage types

• Application cache

• Local and session storage

• IndexedDB

• File system

• Quota API

• Online/Offline events

3

Acknowledgments
• Some of the contents of this presentation is borrowed from HTML5

tutorial of Mozilla Development Network according to the licensing
terms of “Creative Commons Attribution-ShareAlike 2.5”
> http://creativecommons.org/licenses/by-sa/2.5/

4

Offline Web Offline Web
ApplicationsApplications

5

Offline Web Applications
• Your Web app (browser-based app) needs to function without

connectivity
> One big reason why people still use desktop apps

• Your Web app needs to present a consistent UI to your users so that
even if they are offline, they can still see and use some of your
application
> Build your apps with offline in mind first

6

HTML5 OfflineHTML5 Offline
Storage Types &Storage Types &
TechnologiesTechnologies

7

HTML5 Offline Storage Types
• Temporary (Transient)
> Automatically given to each app
> Shared among all web apps running in the browser. The shared

pool can be up to half of the of available disk space

• Persistent
> Stays in the browser unless the user expunges it
> An application can have a larger quota for persistent storage than

temporary storage, but it must request storage using the Quota
Management API and the user must grant it

• Unlimited
> Unlimited storage is similar to persistent storage, but it is available

only to Chrome apps and extensions (.crx files)

8

HTML5 Offline Storage Technologies
• Application cache

• Local and session storage

• IndexedDB

• Local file system

9

Application CacheApplication Cache

10

Why Application Cache (AppCache)?

• Why Application cache?
> Old browsers have caching mechanisms, but they're unreliable

and don't always work as you might expect
> Old browsers do not allow app-specific control for developers

• Application cache enables
> Offline browsing - users can navigate your full site even when

they're offline
> Higher speed - cached resources are local, and therefore they get

loaded faster
> Reduced server load - the browser will only download resources

from the server that have changed

• Where Application cache information specified?
> In the “Application cache manifest file”

11

Application Cache Manifest File

• What is application cache manifest file for?
> You specify which application files the browser should cache and

make available to offline users in the App. Cache Manifest file

• Where do you specify the location of application cache
manifest file?
> In the <html ..> tag with “manifest” attribute

<!DOCTYPE html>
<html manifest="my_cache1.appcache">
<head>
 ...
</head>
<body>
 ...
</body>
</html>

12

Application Cache Manifest File

• A manifest can have three distinct sections – each section
is marked with a header
> CACHE - default section for entries. Files listed under this header

(or immediately after the CACHE MANIFEST) will be explicitly
cached after they're downloaded for the first time.

> NETWORK - resources that require a connection to the server
regardless. All requests to these resources bypass the cache,
even if the user is offline. Wildcards may be used.

> FALLBACK - An optional section specifying fallback pages if a
resource is inaccessible. The first URI is the resource, the second
is the fallback. Both URIs must be relative and from the same
origin as the manifest file. Wildcards may be used.

13

Updating Cache

• Once an application is offline, it remains cached until one of
the following happens:
> The user manually clears their browser's data storage for your site
> The manifest file is modified. Note: updating a data file listed in the

manifest doesn't mean the browser will re-cache that resource.
The manifest file itself must be altered.

> The app cache is programmatically updated

14

Programmatic Control

• Browsers provide window.applicationCache object for
programmatic access to the browser's app cache

• You can get the current status of the cache
> var appCache = window.applicationCache;
> console.log(appCache.status)

• Status of the cache
> Uncached, Idle, Checking, Downloading, UpdateReady, Obsolete

15

AppCache Event

• AppCache events are fired by the browser by default
• You can also register custom event handlers to catch these

events

var appCache = window.applicationCache;

// Fired after the first cache of the manifest.
appCache.addEventListener('cached', handleCacheEvent, false);

// Checking for an update. Always the first event fired in the sequence.
appCache.addEventListener('checking', handleCacheEvent, false);

// An update was found. The browser is fetching resources.
appCache.addEventListener('downloading', handleCacheEvent, false);

// More events

16

Viewing the AppCache Contents

• In Chrome, you can see the AppCache contents from
chrome://appcache-internals

17

Lab:Lab:

Exercise 1: Application CacheExercise 1: Application Cache
1232_html5_offline.zip1232_html5_offline.zip

18

Local and Session Local and Session
StorageStorage

19

Why HTML5 Storage API?

• Cookie was only storage option (available to developers)
before HTML5

• Cookies limit how much you can save (typically 4K limit)
> You cannot save large document

• Cookies are transmitted back and forth for every request
> Waste of network bandwidth
> Security risk

20

HTML5 Storage API

• Session storage API
> Persists only as long as the window or a tab is alive
> Values are visible only within the window or tab in which it is

created
> Survives page reloading but will be deleted when the user closes

the window or the tab

• Local storage API
> Persists beyond page restarts
> Values are shared across every window or tab from the same

origin
> Good for storing preferences

• Only String data type can be stored

21

Lab:Lab:

Exercise 2: Local and Session StorageExercise 2: Local and Session Storage
1232_html5_offline.zip1232_html5_offline.zip

22

IndexedDBIndexedDB

23

What is and Why IndexedDB?

• IndexedDB allows storage of significant amounts of
structured data and for high performance searches on this
data using indexes
> Example: a catalog of DVDs in a lending library

• One of the main design goals of IndexedDB is to allow large
amounts of data to be stored for offline use

• IndexedDB provides powerful query abilities

24

IndexedDB Comparison

• Local storage vs. IndexedDB
> Local storage - lets you store/retrieve data using a simple key-

value pair, limited in size
> IndexedDB - a more powerful option, lets you locally store large

numbers of ad-hoc data (objects) and retrieve data using robust
data access mechanisms

• Replaces Web SQL
> WebSQL Database is deprecated by W3C in 2010
> WebSQL Database is a relational database access system,

whereas IndexedDB is an indexed table system.
> IndexedDB provides indexing, transactions, querying, cursor

support

25

Inner workings of IndexedDB

• IndexedDB lets you store and retrieve objects which are
indexed with a key

• All changes that you make to the database happen within
transactions

• Like most web storage solutions, IndexedDB follows a
same-origin policy
> So while you can access stored data within a domain, you cannot

access data across different domains.

26

IndexedDB:IndexedDB:
Key ConceptsKey Concepts

27

IndexedDB Key Concept #1

• IndexedDB databases store key-value pairs
> The values can be complex structured objects, and keys can be

properties of those objects
> You can create indexes that use any property of the objects for

quick searching, as well as sorted enumeration

28

IndexedDB Key Concept #2

• IndexedDB is built on a transactional database model.
> Everything you do in IndexedDB always happens in the context of

a transaction - you cannot execute commands or open cursors
outside of a transaction

> This transaction model is really useful when you consider what
might happen if a user opened two instances of your web app in
two different tabs simultaneously. Without transactional
operations, the two instances could stomp all over each other's
modifications.

29

IndexedDB Key Concept #3

• The IndexedDB API is mostly asynchronous
> The API doesn't give you data by returning values synchronously;

instead, you have to pass a callback function.

30

IndexedDB:IndexedDB:
How to use itHow to use it

31

Basic Usage Pattern

1. Open a database and start a transaction.

2. Create an object store.

3. Make a request to do some database operation, like adding
or retrieving data.

4. Wait for the operation to complete by listening to the right
kind of DOM event.

5. Do something with the results (which can be found on the
request object).

32

Structuring the database

• IndexedDB does not use Structured Query Language (SQL)
> It uses queries on an index that produces a cursor, which you use

to iterate across the result set

• IndexedDB uses object stores rather than tables, and a
single database can contain any number of object stores.

• Whenever a value is stored in an object store, it is
associated with a key

33

Lab:Lab:

Exercise 3: IndexedDBExercise 3: IndexedDB
1232_html5_offline.zip1232_html5_offline.zip

34

Local File System Local File System

35

FileSystem APIs

• What is FileSystem APIs?
> With the FileSystem API, a web app can create, read, navigate,

and write to a sandboxed section of the user's local file system

• 3 Types of FileSystem APIs
> Reading and manipulating files: File/Blob, FileList, FileReader
> Creating and writing: Blob(), FileWriter
> Directories and file system access: DirectoryReader,

FileEntry/DirectoryEntry, LocalFileSystem

36

Browser Support (limited to Chrome)
• As of April, 2013 - http://caniuse.com/#search=filesystem

http://caniuse.com/#search=filesystem

37

Lab:Lab:

Exercise 4: File System APIExercise 4: File System API
1232_html5_offline.zip1232_html5_offline.zip

38

Quota APIQuota API

39

Querying Storage Usage

• To query the storage size that is being used and the
available space left for the host, call
queryUsageAndQuota()

// Request storage usage and capacity left
window.webkitStorageInfo.queryUsageAndQuota(
 webkitStorageInfo.TEMPORARY,
 function(used, remaining) {
 console.log("Used quota: " + used + ", remaining quota: " + remaining);
 },
 function(error) {
 console.log('Error', error);
 }
);

40

Asking for more storage

• For persistent storage for Files System API, the default quota is
0, so you need to explicitly request storage for your application.
Call requestQuota() with the following
> Type of storage
> Size
> Success callback

// Request Quota (only for File System API)
window.webkitStorageInfo.requestQuota(PERSISTENT, 1024*1024,
 function(used) {
 console.log('Used', used);
 },
 function(error) {
 console.log('Error', error);
 }
);

41

Lab:Lab:

Exercise 5: Quota APIExercise 5: Quota API
1232_html5_offline.zip1232_html5_offline.zip

42

Online/Offline Online/Offline
EventsEvents

43

Online/Offline Detection

• navigator.onLine property
> The events online and offline are fired when the value of this

attribute changes
> This attribute is inherently unreliable. A computer can be

connected to a network without having Internet access
> Only Chrome sets navigator.onLine property to “online”/“offline”

when connectivity changes. Both Safari and Firefox never set the
flag to false even if you remove the internet connection

44

Online/Offline Detection (Chrome)

 function displayStatus(event) {
 statusElem.className = navigator.onLine ? 'online' : 'offline';
 statusElem.innerHTML = navigator.onLine ? 'online' : 'offline';
 state.innerHTML += 'New event: ' + event.type + '';
 }

 window.addEventListener('online', displayStatus);
 window.addEventListener('offline', displayStatus);

45

Lab:Lab:

Exercise 6: Online/Offline EventExercise 6: Online/Offline Event
1232_html5_offline.zip1232_html5_offline.zip

46

Learn with Passion!Learn with Passion!
JPassion.comJPassion.com

46

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

