
1

Hadoop MapReduceHadoop MapReduce

Sang ShinSang Shin
JPassion.comJPassion.com

““Learn with Passion!”Learn with Passion!”

1

2

Topics
• Hadoop MapReduce operational architecture

• MapReduce general concepts

• Hadoop MapReduce programming

• Hadoop MapReduce framework

• Hadoop MapReduce example: Word Count

• Executing Hadoop MapReduce application

• Input file and Input format

3

Acknowledgment
• Some contents of this presentation is created from “Hadoop Tutorial

from Yahoo!" by Yahoo! Inc. is under a Creative Commons Attribution
3.0 Unported License
> https://developer.yahoo.com/hadoop/tutorial/module4.html

Hadoop MapReduce Hadoop MapReduce
Operational ArchitectureOperational Architecture

5

Hadoop MapReduce Architecture
• Job submitter (client): submit jobs to job tracker

• One Job Tracker node: send tasks to task trackers and coordinate them

• Multiple Task Tracker nodes: execute job tasks

6

Job Execution Flow
1. Job submitter (client) submits a job to Job Tracker

2. Job Tracker creates execution plan

3. Job Tracker sends tasks to Task Trackers

4. Task Trackers performs tasks and also report progress to Job
Tracker via heartbeats

5. Job Tracker manages “map” and “reduce” phases

6. Job tracker updates states

7

MapReduce Architecture

8

Lab:Lab:

Exercise 0: Study MapReduce ArchitectureExercise 0: Study MapReduce Architecture
5908_hadoop_mapreduce.zip5908_hadoop_mapreduce.zip

MapReduce General MapReduce General
ConceptsConcepts

10

Basic Concept of MapReduce
• MapReduce is a programming model designed for processing large

volumes of data in parallel by dividing the work into a set of
independent tasks

• MapReduce programs are written in a particular style influenced by
functional programming constructs, specifically idioms for processing
lists of data

11

MapReduce uses Functional Programming

• Computation of large volumes of data in parallel requires dividing the
workload across a large number of machines

• Non-functional programming model, where components were allowed
to share data arbitrarily, will not scale to large clusters (hundreds or
thousands of nodes)
> The communication overhead required to keep the data on the

nodes synchronized at all times would be extremely high
• MapReduce uses functional programming, where all data elements in

MapReduce are immutable, meaning that they cannot be updated
> If, in a mapping task, you change an input (key, value) pair, it does

not get reflected back in the input files; communication occurs only
by generating new output (key, value) pairs, which are then
forwarded by the system into the next phase of execution

12

List Processing: Map and Reduce

• Conceptually, a MapReduce program performs the transformation
> “lists of input data elements” -> “lists of output data elements”

• A MapReduce program will do this twice, using two different list
processing idioms in two phases
> Using “map” idiom in “mapping” phase
> Using “reducing” idiom in “reducing” phase

13

“Mapping” Phase

• The first phase of a MapReduce program is called “Mapping” - A list
of data elements are provided, one at a time, to a function called the
“Mapper”, which transforms each element individually to an output
data element – this is called “Mapping”

14

Mapping Lists Example

• A mapping function toUpper(str) which returns an uppercase version
of its input string
> You could use this function with map to turn “a list of strings” into

“a list of uppercase strings”
> Note that we are not modifying the input string here: we are

returning a new string that will form part of a new output list.

15

“Reducing” Phase

• Reducing lets you aggregate values together

• A reducer function receives an iterator of input values from an input
list. It then combines these values together, returning a single output
value

16

Reducing Lists Examples

• Reducing is often used to produce "summary" data, turning a large
volume of data into a smaller summary of itself

• For example, "+" can be used as a reducing function, to return the
sum of a list of input values.

Hadoop MapReduceHadoop MapReduce
Programming Programming

18

Hadoop MapReduce Framework

• The Hadoop MapReduce framework takes these concepts and uses
them to process large volumes of data

• A MapReduce program has two components:
> Mapper: one that implements the mapper
> Reducer: one that implements the reducer

• Bother Mapper and Reducer takes input data and then generates
output data

19

Keys and Values

• In Hadoop MapReduce, data element (in input and output) is always
in key/value pair
> Every value has a key associated with it

• For example, a log of time-coded speedometer readings from multiple
cars could be keyed by license-plate number; it would look like:
AAA-123 65mph, 12:00pm
ZZZ-789 50mph, 12:02pm
AAA-123 40mph, 12:05pm
CCC-456 25mph, 12:15pm

key value

20

 MapReduce Data Flow

source: http://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf

your code

your code

handled by
Hadoop

Hadoop MapReduceHadoop MapReduce
FrameworkFramework

22

Hadoop MapReduce Framework
• Takes care of distributed processing and coordination

• Scheduling
> Jobs are broken down into tasks, which are then scheduled

• Task localization with data
> Hadoop framework sends the tasks (code) to nodes that host

segment of data

• Error handling
> Tasks are automatically retried on other machines when errors occur

• Data synchronization
> Shuffles and sorts data
> Moves data between nodes

23

Hadoop MapReduce Framework
• M

24

MapReduce Data Flow

Hadoop MapReduceHadoop MapReduce
Example: Word Count Example: Word Count

26

Example Application: Word Count

• We want to count how many times each word appears in a set of files

• For example, suppose there are two input files: “foo.txt” & “bar.txt”
> foo.txt: Sweet, this is the foo file
> This is the second line in foo file
> bar.txt: This is the bar file

• We would expect the output
> Sweet, 1
> This 2
> bar 1
> file 3
> foo 2
> in 1
> ...

27

High-level Pseudo-code

mapper (file-contents):
 for each word in file-contents:
 emit (word, 1) # word is key, and 1 is value

<Hadoop performs sorting and suffling>

reducer (word, values): # word, [1,1,1]
 sum = 0
 for each value in values:
 sum = sum + value
 emit (word, sum) # for each word, sum is computed – word, 3

28

Mapper for Word Count Example
• Several instances of the mapper function are created on the

different nodes in the cluster
> Each instance receives a different input file (it is assumed that we

have many such files)
> The mappers emit (word, 1) pairs as output

• Input element to “word count” mapper
> (offset from the file, content of a line)

(0, Sweet, this is the foo file)
(28, This is the second line of the foo file)

• Output elements from “word count” mapper
> (word1,1) (word2,1) (word3 ,1), etc

(Sweet,1) (this,1) (the,1) (foo,1) (file,1) (This,1) (is,1)(the,1) ...

29

Reducer for Word Count Example
• Several instances of the reducer method are also instantiated on

the different nodes in the cluster
> Each reducer is responsible for processing the list of values

associated with a different word
> The list of values will be a list of 1's; the reducer sums up those ones

into a final count associated with a single word
> The reducer then emits the final (word, count) output which is written

to an output file

• Input element to “word count” reducer
> (word1, (1,1)) (word2, (1,1,1)) (word3 , 1), etc

(Sweet, 1) (this, 1) (the, (1,1,1)) (foo, (1,1)) (file, (1,1))

• Output elements from “word count” reducer
> (word1, count)

(Sweet,1) (the,3) (foo,2)..

30

Program Components
• Mapper class

> Represents a Mapper

• Reducer class
> Represents a Reducer

• Driver
> Initializes the job and instructs the Hadoop platform to execute your

code on a set of input files, and controls where the output files are
placed

31

Word Count Mapper Class
// Mapper<KEYIN, VALUEIN, KEYOUT,VALUEOUT> interface
public class WordCountMapper extends Mapper<Object, Text, Text, IntWritable> {

 private Text word = new Text();
 private final static IntWritable one = new IntWritable(1);

 @Override
 public void map(Object key, Text value, Context context) throws IOException,
 InterruptedException {

 // Break line (represented by “value”) into words for processing
 StringTokenizer wordList = new StringTokenizer(value.toString());

 while (wordList.hasMoreTokens()) {
 word.set(wordList.nextToken());
 context.write(word, one);
 }
 }
}

32

Word Count Reducer Class
// Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT>
public class WordCountReducer extends
 Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text text, Iterable<IntWritable> values, Context context)
 throws IOException, InterruptedException {

 int sum = 0;
 for (IntWritable value : values) {
 sum += value.get();
 }
 context.write(text, new IntWritable(sum));
 }
}

33

Driver Class
 // Create job
 Job job = new Job(conf, "WordCountDriver");
 ..

 // Setup MapReduce classes
 job.setMapperClass(WordCountMapper.class);
 job.setReducerClass(WordCountReducer.class);
 job.setNumReduceTasks(1);

 ...

 // Execute job
 int code = job.waitForCompletion(true) ? 0 : 1;
 System.exit(code);

Executing MapReduceExecuting MapReduce
ApplicationApplication

35

Executing MapReduce Application
• Within Eclipse

> Default file system is local file system
> In order to use HDFS, you have to provide full path (as shown below)

hdfs://localhost:8020/user/cloudera/my_data/input

• At the command line
> Default file system is HDFS
> You have to create jar file that contains the Java classes
> Use “hadoop” command to run it

hadoop jar target/wordcount-0.0.1-SNAPSHOT.jar
com.jpassion.wordcount.WordCountDriver my_data/input output

36

Input and Output Directory
• An input can be either directory or a file

> If it is a directory, all files under that directory are used as input files

• The output directory gets created by Hadoop
> If the output directory already exists, Hadoop generates an error
> You can delete the output directory first programmatically before

submitting a job (we do this in our sample apps as shown below)

 // Delete output if exists
 FileSystem hdfs = FileSystem.get(conf);
 if (hdfs.exists(outputDir))
 hdfs.delete(outputDir, true);

 // Execute job
 int code = job.waitForCompletion(true) ? 0 : 1;
 System.exit(code);

37

Lab:Lab:

Exercise 1: Build and RunExercise 1: Build and Run
WordCount MapReduce ApplicationWordCount MapReduce Application

5908_hadoop_mapreduce.zip5908_hadoop_mapreduce.zip

Input Files andInput Files and
Input FormatInput Format

39

Input Files
• This is where the data for a MapReduce task is initially stored

• The input files typically reside in HDFS for scalability and reliability
reasons

• The format of these files is arbitrary
> While line-based text files can be used, we could also use a binary

format, multi-line input records, or something else entirely

• It is typical for these input files to be very large
> Tens of gigabytes or more

40

Input Format
• How these input files are split up and read is defined by the

InputFormat

• An InputFormat is a class that provides the following functionality:
> Selects the files or other objects that should be used for input
> Defines the InputSplits that break a file into tasks
> Provides a factory for RecordReader objects that read the file

• Several InputFormats are provided with Hadoop
> TextInputFormat
> KeyValueInputFormat
> SequenceFileInputFormat

• The default InputFormat is the TextInputFormat
> This treats each line of each input file as a separate record, and

performs no parsing

41

Input Formats Provided by MapReduce
InputFormat Description Key Value

TextInputFormat Default format;
reads lines of text
files

The byte offset of the line The line contents

KeyValueInputFormat Parses lines into
key, val pairs

Everything up to the first
tab character

The remainder of the line

SequenceFileInputFormat A Hadoop-specific
high-performance
binary format

user-defined user-defined

42

Lab:Lab:

Exercise 2: WordSize ApplicationExercise 2: WordSize Application
Exercise 3: Weather Stat ApplicationExercise 3: Weather Stat Application

5908_hadoop_mapreduce.zip5908_hadoop_mapreduce.zip

43

 Learn with Passion!Learn with Passion!
JPassion.comJPassion.com

43

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

