
1

RMI (RemoteRMI (Remote
Method Invocation)Method Invocation)

Sang ShinSang Shin
www.JPassion.comwww.JPassion.com

““Learn with JPassion!”Learn with JPassion!”

1

2

Topics

 What is RMI? Why RMI?
 Architectural components
 Serialization
 Writing RMI Server and Client
 Dynamic class loading
 Code movement
 Codebase
 ClassLoader delegation
 Activation
 RMI Security
 HTTP Tunneling

What is RMI?What is RMI?

4

What is RMI?

 RPC (Remote Procedure Call) between
Java Objects

 General RPC behavior
 Invoke remote methods
 Pass arguments into methods
 Receive results from methods

 RPC Evolution
 Non-object-oriented RPC
 CORBA (Object-oriented)
 RMI (Object-based – Java only)

5

What is RMI?

 Differences from other RPC’s
 RMI is Java-based
 RMI supports code movement
 RMI has built-in security mechanism
 RMI exposure of network failures to

application programmers through
RemoteException

6

Why RMI?

 Capitalizes on the Java object model
 Minimizes complexity of distributed

programming
 Uses pure Java interfaces

 no new interface definition language (IDL)
 Preserves safety of Java runtime
 Recognizes differences of remote call from

local call
 partial failure
 latency
 no global knowledge on system state

RMI Architectural RMI Architectural
ComponentsComponents

8

RMI Architectural Components

 Remote interface
 Stub and Skeleton (generated through

“rmic”
 Remote object

9

Remote Interface

 Java interface
 Specify remotely accessible methods

 Implemented by a class, an instance of
which becomes a remote object

 Contract between caller of the remote
method (RMI client) and remote object
(RMI server)

 Extends java.rmi.Remote interface
 Markup interface

Stub & SkeletonStub & Skeleton

11

Stub and Skeleton

 A tool (rmic) creates
 RMI stub
 (Optionally) RMI skeleton

 Gets created from RMI server
implementation (not from RMI
interface)

12

Stub and Skeleton

 RMI Stub
 Resides in client’s local address space
 Represents remote object to client

 Plays the role of proxy of remote object
 Implementation of Remote interface
 Caller invokes methods of RMI Stub locally

 Connects to the remote object
 Sends arguments to and receive results

from remote object
 Performs marshaling and unmarshaling

13

Stub and Skeleton

 RMI Skeleton
Resides in server’s address space
 Receives arguments from caller (RMI

Client's Stub) and send results back to
caller
Performs marshaling and unmarshaling

 Figures out which method of remote
object to be called

 From JDK 1.3, RMI Skeleton gets created
automatically via reflection

14

Remote Object

 Implementation of remote interface
 Needs to be exported

 In order to be ready to receive calls from
caller

 Can be exported in two types
 Non-activatable (extends

java.rmi.server.UnicastRemoteObject)
 Activatable (extends

java.rmi.server.Activatable)

RMI Communication ModelRMI Communication Model

16

RMI Communication Model

Caller

Remote Interface

Stub

Remote
Object

Skeleton

17

RMI Control Flow

18

RMI Control Flow

 Caller (Client)
1. invokes a method of a remote object

 Stub of the remote object
1. intercepts the method call
2. marshals the arguments
3. makes calls to remote object

19

RMI Control Flow

 Remote object
1. Receives the calls via Skeleton
2. Unmarshals the arguments
3. Performs the call locally
4. Marshals the result
5. Send the result to client

 Stub
1. Receives result
2. Unmarshal result
3. Return result to client

Serialization in RMISerialization in RMI

21

Marshaling and Unmarshaling

 Marshaling is a process of encoding
objects to put them on the wire

 Unmarshaling is the process of decoding
from the wire and placing object in the
address space

 RMI uses Java programming lanaguage's
serialization and deserialization to
perform marshaling and unmarshaling
 These terms are used interchangeably

22

Serialization in RMI

 Arguments/Results get serialized before
being transported by sender

 Arguments/Results get deserialized after
being transported by receiver

 Arguments/Results in RMI can be one of
the following two
 Remote object
 Non-remote object

23

Serialization in RMI

 For remote object
 Object which is Remote interface type
 Stub gets serialized (instead of remote object

itself)
 “Pass by reference” semantics

 Stub is kind of a reference to remote object
 For non-remote object

 Object which is not Remote interface type
 Normal serialized copy of the object
 Should be type of java.io.Serializable
 “Pass by Value” semantics

24

Example

// Arguments and Returns are non-remote objects
public interface SayHelloStringRemote extends Remote {
 public String SayHelloString (String message)
 throws RemoteException;
}

// Arguments has both non-remote and remote objects
public interface SayHelloObjectRemote extends Remote {
 public String SayHelloObject (String messsage,
 SayHelloStringRemote someName)
 throws RemoteException;
}

25

Serialization

 Serialized copy of an object
 Stream of bytes
 Persistently maintains state of an object

 State of non-static and non-transient variables
of the object

 Does NOT contain class bytecodes (*.class
files)
 Instead maintains information on “where to get

the class bytecodes”
– codebase annotation
– Who performs the codebase annotation?

 If the class is unknown to the recipient, it will
be downloaded automatically

26

Serialization

 Serialized copy defines state
 Class files define behavior
 Both can be moved around over the

network
 Collectively this is called "Code movement"

Writing RMI ServerWriting RMI Server

28

Steps of Writing RMI Server

 #1: Define remote interface
 #2: Write and compile server

implementation
 #3: Generate stub class from server

implementation class
 #4: Write startup class

29

#1: Define Remote Interface

 Defines methods that are called remotely
 Must be declared as public
 Extends the java.rmi.Remote interface
 Each method must declare

java.rmi.RemoteException
 The data type of any remote object that is

passed as an argument or return value
(either directly or embedded within a local
object) must be declared as the Remote
interface type (for example, Hello) not the
implementation class (HelloImpl).

30

#1: Remote Interface Example

import java.rmi.*;

/**
 * Remote Interface
 */
public interface HelloInterface extends Remote {

 public String sayHello(String name)
 throws RemoteException;
}

31

#2: Write Server implementation

 Implement the remote interface
 Extend one of the two remote classes

 java.rmi.server.UnicastRemoteObject
 java.rmi.activation.Activatable

 Write constructor for the remote object
 By extending one of the two remote classes

above, they are automatically exported
 You can manually export it as well

 Throw RemoteException
 Register remote objects with RMI registry

32

#2: Server Implementation Example

import java.rmi.*;
import java.rmi.server.*;

/**
 * Remote implementation class. Because it extends the
 * UnicastRemoteObject, it is automatically exported.
 */
public class HelloImpl extends UnicastRemoteObject
 implements HelloInterface {

 public HelloImpl() throws RemoteException {
 }

 public String sayHello(String name) throws RemoteException {
 return "Hello " + name + "!";
 }
}

33

#3: Generate Stub class

C:\myprojects\RMI_app>rmic HelloImpl
C:\myprojects\RMI_app>dir
 Volume in drive C has no label.
 Volume Serial Number is F090-5679

 Directory of C:\myprojects\RMI_app

10/16/2010 07:39 AM <DIR> .
10/16/2010 07:39 AM <DIR> ..
10/16/2010 07:37 AM 454 HelloImpl.class
10/16/2010 07:37 AM 757 HelloImpl.java
10/16/2010 07:39 AM 1,639 HelloImpl_Stub.class
10/16/2010 07:37 AM 222 HelloInterface.class
10/16/2010 07:35 AM 357 HelloInterface.java
 5 File(s) 3,429 bytes
 2 Dir(s) 22,326,777,856 bytes free

34

#4: Write Startup code

 Contains main() method
 Create and export remote object
 Register remote object with RMI registry

35

Startup code example
import java.rmi.*;

public class HelloServer {

 public static void main(String[] argv) {
 try {
 // Create remote object and register with rmiregistry
 Naming.rebind("Hello", new HelloImpl());
 System.out.println("Hello Server is ready.");
 } catch (Exception e) {
 System.out.println("Hello Server failed: " + e);
 }
 }
}

36

RMI Registry

 RMI Registry is a simple naming service
 Bootstrap mechanism
 Typically is used by caller to get the remote

reference of the first remote object
 Client gets reference to remote object -

actually reference to stub object of the
remote object

Writing RMI ClientWriting RMI Client

38

Steps of Writing RMI Client

 Get a reference to the remote object
implementation
 The registry returns the Stub instance of the

remote object bound to that name
 Invoke remote methods

39

Client Example

import java.rmi.*;

public class HelloClient {

 /**
 * Client program for the "Hello, world!" example.
 * @param argv The command line arguments which are ignored.
 */
 public static void main(String[] argv) {
 try {
 HelloInterface hello =
 (HelloInterface) Naming.lookup("Hello");
 String result = hello.sayHello("Sang Shin");
 System.out.println(result);
 } catch (Exception e) {
 System.out.println("HelloClient exception: " + e);
 }
 }
}

40

Demo:Demo:
Exercise 1: “Hello World”Exercise 1: “Hello World”

RMI Server and ClientRMI Server and Client
1602_javase_rmi.zip1602_javase_rmi.zip

Dynamic Class Dynamic Class
LoadingLoading

42

Dynamic Class Loading

 Class bytecodes (Class file) get
downloaded during runtime
 When caller does not have the class

bytecodes in local classpath
 RMI Stub needs to be downloaded to RMI

Caller’s address space from somewhere
 Serialized copy of an object contains “where

to get class bytecodes” information
 Codebase annotation

43

Who Does Provide Codebase
Annotation Information?
 By the exporter of the class
 Via Export codebase (RMI codebase)

property
 java.rmi.server.codebase
 Typically via HTTP URL

44

When Does the Codebase
Annotation occurs?
 Whenever an object gets serialized
 For remote object

 Codebase information of Stub class
 For non-remote object

 Codebase information of normal class

45

RMI Server and Client Deployment
Scenario

 Both client and server have RMI Remote
interface class in their local classpaths

 Server has HelloWorld_Stub class in its
local classpath

 Client does not have HelloWorld_Stub
class in its localpath
 He could, but is diminishes the whole

purpose of class downloading
 Server exports HelloWorld_Stub class via

HTTP server

46

RMI Server and Client Deployment
Scenario (Continued)

 Client gets HelloWorld_Stub serialized
object from Registry
 Client typically does not have

HelloWorld_Stub class in its local classpath
 So it will read the RMI codebase annotation

(from the serialized stub object) and will try to
download the HelloWorld_Stub class from
the location specified in codebase annotation

Code (and Data)
Movement

Code (and Data) Movement

 Performed in two phases
1. Serialized object (Marshalled Object) gets

moved
2. Class files get downloaded

 Code
Represented by class files

 Data
Represented by state captured in

serialized object

Serialized Object

 Contains
Values of the fields of the object
Name of the class
Location of the class

 Via codebase annotation performed by the
exporter of the class

 RMI codebase property

CodebaseCodebase

51

What is Codebase?

 Location where class bytecodes (Class
files) reside

52

Two types of Codebase

 Import codebase
 codebase your local VM uses to load classes

it needs
 specified via CLASSPATH or -cp option

 Export codebase (RMI codebase)
 codebase remote VMs use to obtain the

class files "exported" from your local VM
 specified via java.rmi.server.codebase

property
 Codebase annotation

53

Behind the Scene Activities

 Any objects marshaled by a server will
be annotated with RMI codebase
 For remote object, the stub object gets

marshaled and annotated
 When a client instantiates the object,

the bytecodes of the class will be
downloaded by RMIClassloader from
the location specified as RMI
codebase

54

RMI codebase forms

 Could be in any URI form
 HTTP (Recommended)
 FTP
 FILE (Not recommended)

 Classes can be accessible via
 JAR
 Directory path

 Trailing slash required

55

RMI codebase

 RMI server
 Export classes that are needed by its client

 Stub classes for remote objects
 Interface classes of remote objects

– If client has the classes in its local classpath, no
downloading occurs

 Any classes that are needed by the interface and
stub classes

 RMI client
 Export classes that are needed by the server

 Same as above

56

RMI codebase examples

 Directories need a trailing slash
 -Djava.rmi.server.codebase="file:/export/home/btm/classes/”
 -Djava.rmi.server.codebase=

"http://daydreamer:8080/export/home/btm/root/dir/”

 Jar files do not need a trailing slash
 -Djava.rmi.server.codebase=

"file:/export/home/btm/jars/examples-dl.jar”
 -Djava.rmi.server.codebase=

"http://daydreamer:8080/export/home/btm/jars/examples-dl.jar”

 You can specify multiple locations
 -Djava.rmi.server.codebase=

"http://daydreamer:8080/export/home/btm/jars/examples-dl.jar
http://daydreamer:8080/export/home/btm/root/dir/"

57

Demo:Demo:
Exercise 2: “Hello World”Exercise 2: “Hello World”

RMI Server and Client UsingRMI Server and Client Using
Export CodebaseExport Codebase

1602_javase_rmi.zip1602_javase_rmi.zip

58

Typical Causes of Problems

 The java.rmi.server.codebase (RMI codebase) property
was not set at all
 Do not use “localhost”

 RMI codebase was set, but HTTP server is not running
 RMI codebase was set, HTTP server is running, but the

class is not present under the proper path in HTTP
server

 The port number on which HTTP server is listening is not
the same as the port number in the RMI codebase

 The name of the host on which HTTP server is running
is not the same as the hostname in the RMI codebase

 If a non-jar URL is being used in the RMI codebase,
there is no trailing slash (if class file location is in a jar
file, no trailing slash is required)

59

Typical RMI codebase
Symptom
java.rmi.UnmarshalException: error unmarshalling

return; nested exception is:
 java.lang.ClassNotFoundException:

example.testService_Stub
 Client could not download the stub class

from the server

60

Typical RMI codebase
Symptom
RemoteException occurred in server thread; nested

exception is:
java.rmi.UnmarshalExceptionException: error
unmarshalling arguments; nested exception is:

java.lang.ClassNotFoundException:test.TestClient$
ServiceListener_Stub

 Server could not download the remote
event listener stub class from the client
 See if stub was generated correctly (via RMIC)
 See if listener object was exported (via

.exportObject() method)
 See if RMI codebase is set correctly by the client

61

Typical RMI codebase
Symptom
 Things are working fine but when client

and server are on different machines, I
get ClassNotFoundException
 Very likely due to the fact that the class files

are not available anymore
 Do not use CLASSPATH for downloadable

files
– Do use RMI codebase

 Do not use “localhost”

62

Implementation Guideline

 Client has remote interface class file in its
local classpath (unless it uses reflection)

 The classes that are needed for
implementation should be downloadable
from the server
 Stub classes
 Interface classes

 Needed when client does not have interface classes in
its local path

 Any other classes that the stub and interface
refers to

 Make jar file in the form of xxx-dl.jar

63

Example

 eventg/buildEventGenerator & eventg/runEventGenerator
[daydreamer] java -Djava.security.policy=/home/sang/src/examples/lease/policyEventGenerator
-Djava.rmi.server.codebase=http://daydreamer:8081/EventGenerator-srvc-dl.jar
http://daydreamer:8081/EventGenerator-attr-dl.jar -jar
/home/sang/jars/EventGenerator.jar daydreamer

[daydreamer] jar -tvf EventGenerator-srvc-dl.jar
 0 Mon Mar 22 13:04:56 EST 1999 META-INF/
 66 Mon Mar 22 13:04:56 EST 1999 META-INF/MANIFEST.MF
 982 Mon Mar 22 13:04:04 EST 1999 examples/eventg/EventGenerator.class
 7933 Mon Mar 22 13:04:20 EST 1999
examples/eventg/EventGeneratorImpl_Stub.class
 1532 Mon Mar 22 13:03:52 EST 1999 examples/eventg/TestLease.class
 911 Mon Mar 22 13:03:52 EST 1999 examples/eventg/TestLeaseMap.class
 1554 Mon Mar 22 13:04:00 EST 1999 examples/eventg/TestEventLease.class
 967 Mon Mar 22 13:04:00 EST 1999 examples/eventg/TestEventLeaseMap.class
 410 Mon Mar 22 13:03:56 EST 1999 examples/eventg/TestEvent.class

[daydreamer] jar -tvf EventGenerator-attr-dl.jar
 0 Mon Mar 22 13:05:14 EST 1999 META-INF/
 66 Mon Mar 22 13:05:14 EST 1999 META-INF/MANIFEST.MF
 752 Mon Mar 22 13:05:10 EST 1999 net/jini/lookup/entry/ServiceInfo.class
 1764 Mon Mar 22 13:05:12 EST 1999
com/sun/jini/lookup/entry/BasicServiceType.class

64

Trouble-shooting methods

 Run HTTP server in verbose mode (Example next slide)
 Will display all the jar or class files being downloaded

 Set “-Djava.rmi.loader.logLevel=VERBOSE” on RMI
client (Example next slide)
 Will tell which class file is being downloaded from

which location
 Try “javap -classpath <pathlist or jar files>

<classname>” on command line (Example next slide)
 Will tell what is really missing

 See if you can access the jar file using a browser
 “Save as” dialog box pops up if the file is accessible

 Try FTP URL notation (instead of HTTP)
 If it works, HTTP has a problem

65

Running HTTP server in
verbose mode

[daydreamer] java -cp /files/jini1_0/lib/tools.jar com.sun.jini.tool.ClassServer
-port 8081 -dir /home/sang/jars -verbose

java -cp /home/sang/files/jini1_0/lib/tools.jar com.sun.jini.tool.ClassServe
ort 8081 -dir /home/sang/jars -verbose
RegRemoteAndProvideLease-srvc-dl.jar from daydreamer:65296
RegRemoteAndProvideLease-srvc-dl.jar from daydreamer:33431
RegRemoteAndProvideLease-srvc-dl.jar from daydreamer:33797
DiscoveryByGroup-srvc-dl.jar from daydreamer:37616
DiscoveryByGroup-srvc-dl.jar from daydreamer:37617
DiscoveryByGroup-attr-dl.jar from daydreamer:37620
DiscoveryByGroup-attr-dl.jar from daydreamer:37621
DiscoveryByLocator-srvc-dl.jar from daydreamer:37886
DiscoveryByLocator-srvc-dl.jar from daydreamer:37887

66

-Djava.rmi.loader.logLevel=VERBOSE

[daydreamer] java
-Djava.security.policy=/home/sang/src/examples/client/policyLookupSrvcAndInvoke -Dsun.rmi.loader.logLevel=VERBOSE
 -jar /home/sang/jars/LookupSrvcAndInvoke.jar daydreamer

groupsWanted[0] = daydreamer
Waiting For Discovery to Complete

Wed Mar 17 07:43:01 EST 1999:loader:unicast discovery:LoaderHandler.loadClass: loading class "com.sun.jini.reggie.RegistrarProxy" from
[http://daydreamer:8080/reggie-dl.jar]

.Wed Mar 17 07:43:02 EST 1999:loader:unicast discovery:LoaderHandler.loadClass: loading class "com.sun.jini.reggie.RegistrarImpl_Stub"
from [http://daydreamer:8080/reggie-dl.jar]

LookupDiscoveryListener: discovered...
 Lookup on host jini://daydreamer/:
 regGroups[0] belongs to Group: myGroup
 regGroups[1] belongs to Group: daydreamer
...........
Discovery of Available Lookups Complete.
Query each Lookup for known Services, the Invoke ...
Lookup Service on Host: jini://daydreamer/
 Belongs to Group: daydreamer
Wed Mar 17 07:43:13 EST 1999:loader:main:LoaderHandler.loadClass: loading class "com.sun.jini.lookup.entry.BasicServiceType" from

[http://daydreamer:8080/reggie-dl.jar]
Wed Mar 17 07:43:13 EST 1999:loader:main:LoaderHandler.loadClass: loading class "net.jini.lookup.entry.ServiceInfo" from

[http://daydreamer:8080/reggie-dl.jar]
Wed Mar 17 07:43:13 EST 1999:loader:main:LoaderHandler.loadClass: loading class "com.sun.jini.lookup.entry.BasicServiceType" from

[http://daydreamer:8080/sun-util.jar, http://daydreamer:8081/RegRemoteAndProvideLease-srvc-dl.jar,
http://daydreamer:8081/RegRemoteAndProvideLease-attr-dl.jar]

Wed Mar 17 07:43:13 EST 1999:loader:main:LoaderHandler.loadClass: loading class "net.jini.lookup.entry.ServiceInfo" from
[http://daydreamer:8080/sun-util.jar, http://daydreamer:8081/RegRemoteAndProvideLease-srvc-dl.jar,
http://daydreamer:8081/RegRemoteAndProvideLease-attr-dl.jar]

67

javap

[daydreamer:291] javap -classpath LookupSrvcAndInvoke.jar examples/lease/TestLease
Class 'examples/lease/TestLease' not found

[daydreamer:289] javap -classpath RegRemoteAndProvideLease-srvc-dl.jar examples/lease/TestLease
Error: No binary file 'AbstractLease’

[daydreamer:326] javap -classpath RegRemoteAndProvideLease.jar:sun-util.jar examples/lease/TestLease
Error: No binary file 'Lease'

[daydreamer:332] javap -classpath RegRemoteAndProvideLease.jar:sun-util.jar:jini-core.jar
examples/lease/TestLease

Compiled from TestLease.java
public class examples/lease/TestLease extends com.sun.jini.lease.AbstractLease {
 protected final examples.lease.RegRemoteAndProvideLease server;
 protected final java.lang.String leaseID;
 protected examples/lease/TestLease(examples.lease.RegRemoteAndProvideLease,java.lang.String,long);
 public boolean canBatch(net.jini.core.lease.Lease);
 public void cancel() throws net.jini.core.lease.UnknownLeaseException, java.rmi.RemoteException;
 public net.jini.core.lease.LeaseMap createLeaseMap(long);
 public long doRenew(long) throws net.jini.core.lease.UnknownLeaseException, java.rmi.RemoteException;
 java.lang.String getLeaseID();
 examples.lease.RegRemoteAndProvideLease getRegRemoteAndProvideLease();
 void setExpiration(long);
}

68

javap

 admin/AdminServer registers with a lookup service without including
OurOwnAdmin class file in its downloadable jar

 You will see unknown service on the Lookup browser

[daydreamer:230] cd ~sang/jars
[daydreamer:232] ls -lat Admin*
-rw-rw---- 1 sang jinieast 8035 Mar 22 21:19 AdminClient.jar
-rw-rw---- 1 sang jinieast 2083 Mar 21 23:44 AdminServer-attr-dl.jar
-rw-rw---- 1 sang jinieast 4953 Mar 21 23:44 AdminServer-srvc-dl.jar
-rw-rw---- 1 sang jinieast 13560 Mar 21 23:44 AdminServer.jar

[daydreamer:229] !226
javap -classpath AdminServer-srvc-dl.jar examples/admin/AdminServerImpl_Stub
Error: No binary file 'Administrable'

[daydreamer:229] javap -classpath AdminServer-srvc-dl.jar:jini-ext.jar examples/admin/AdminServerImpl_Stub
Error: No binary file 'DestroyAdmin'

[daydreamer:229] javap -classpath AdminServer-srvc-dl.jar:jini-ext.jar:sun-util.jar examples/admin/AdminServerImpl_Stub
Error: No binary file 'OurOwnAdmin'

69

Review Points

 RMI codebase
 Used for exporting class files

 Serialized object has codebase annotation
 Set via java.rmi.server.codebase property
 Cause of most of ClassNotFoundException

problems

ClassLoader
Delegation

71

ClassLoader Delegation

 Introduced in JDK 1.2
 Class files are searched based on

classloader hierarchy
 Bootstrap classloader
 Extension classloader
 Application classloader
 RMI classloader

 Ask parent classloader first
 Reason why a class file in local CLASSPATH

gets picked up first before the same class file
gets downloaded from remote location

72

Classloader Hierarchy

Bootstrap Classloader

Extension Classloader

Application Classloader

RMI Classloader

Delegation

RMI codebase

CLASSPATH

Bootstrap Classpath

Extension Classpath

73

Example

Local Classpath

Interface1 Interface1

Interface1Impl_Stub
RMI Classloader

Interface2

Interface2Impl_Stub

RMI Client RMI Server

Activation

75

Activation

 Why activatable objects?
 Service could be shut down inadvertently or

intentionally
 Activatable service gets restarted automatically when

system boots up or on-demand basis
 Activatable service needs to be started (registered with

RMID) only once

 Activation system components
 RMID (Activation system daemon)
 RMID log file

 Persistently stores all activatable objects
 Default is <Directory where RMID gets started>/log directory

 Activatable services
 They are run as child processes of RMID

76

Control Flow of Activation

[A new activatable service with
running RMID]

(5) Client, via lookup operation, retrieves
the proxy object, which contains the
RMI reference

(6) Client Stub talks to the service
directly and gets an exception since
the service (as an RMI server) is
inactive

(7) Client Stub then talks to RMID

(9) Client now can talk directly with the
service

(1) RMID running
(2) A new service registers with RMID

and gets a special RMI reference
-RMID logs the information in
persistent storage

(3) The service (actually the proxy object)
registers with the lookup service - the
proxy object contains the RMI
reference

(4) The service goes inactive
(intentionally or inadvertently)

(8) RMID restarts the service if necessary
in a new VM

77

Control Flow of Activation

[RMID crash and reboot]

(5) Client, via lookup operation, retrieves
the proxy object, which contains the
RMI reference

(6) Client talks to the service directly .

(1) A service is registered with RMID
(2) RMID crashes and reboots
(3) RMID reads the log file and restarted

the services (the ones which set the
RESTART flag during the registration
with RMID)

.

.

78

RMID

 As long as RMID is running and RMID
log file is persistent, a service can get
started on “as needed” basis

 Methods of destroying a service
 Kill RMID and remove RMID log file

 Other services will be destroyed as well
 Sledge hammer approach

 Use com.sun.jini.admin.DestroyAdmin
interface’s destroy() method if the service
supports it
 Recommended approach

79

Activation Trouble-shooting

 java.rmi.activation.ActivationException:
ActivationSystem not running
 Possibly DNS lookup problem
 Try CTRL-\ (Solaris) and CTRL-BREAK (Win32) for stack

trace
 Start RMID with

 -J-Dsun.rmi.server.activation.debugExec=true
 For any RMI properties you want to set for

activatable services (child processes of RMID), start
RMID with “-C-Dproperty=value”
 -C-Djava.rmi.server.logCalls=true

RMI Tunneling

81

RMI Tunneling

 Features
 Protocol runs over HTTP protocol
 Allows RMI client within a firewall to talk to an

RMI server outside of the firewall
 Limitation

 RMI server cannot talk back to the RMI client
 Implications to Jini

 No multicast discovery
 Have to use Unicast

 No event notification from RMI server to RMI
client

RMI SecurityRMI Security

83

Java Security

 In Java, SecurityManager handles
security control
 Based on security policy file
 Security policy define “permission control”

based on
 Where the code came from
 Who signed the code
 Examples

– All code signed by Dave can write to a particular
directory

– Any code downloaded from a particular HTTP
server site has no filesystem access

84

Security Policy Example

 Give all all permission to any code
grant {
 permission java.security.AllPermission "", "";
};

 Use the above “all permission to all” only
during testing
 Never use it in production environment

85

Security Policy Example
grant codebase "file:${java.class.path}" {
 // file system dependent permissions for unix file system
 permission java.io.FilePermission "./*", "read,write,execute,delete";
 permission java.io.FilePermission "/tmp", "read,write,execute,delete";
 permission java.io.FilePermission "/tmp/-", "read,write,execute,delete";
 permission java.io.FilePermission "/var/tmp", "read,write,execute,delete";
 permission java.io.FilePermission "/var/tmp/-", "read,write,execute,delete";
 // uncomment this one if you need lookup to accept file: codebases
 // permission java.io.FilePermission "<<ALL FILES>>", "read";
 permission java.lang.RuntimePermission "modifyThreadGroup";
 permission java.lang.RuntimePermission "modifyThread";
 permission java.net.SocketPermission "*:1024-", "connect,accept";
 // for http: codebases
 permission java.net.SocketPermission "*:80", "connect";
 permission java.net.SocketPermission "224.0.1.84", "connect,accept";
 permission java.net.SocketPermission "224.0.1.85", "connect,accept";
 permission java.util.PropertyPermission "java.rmi.server.hostname", "read";
 permission java.util.PropertyPermission "com.sun.jini.reggie.*", "read";
 permission java.util.PropertyPermission "net.jini.discovery.*", "read";
 permission net.jini.discovery.DiscoveryPermission "*";
 // file system dependent permissions for windows file system
 permission java.io.FilePermission ".*", "read,write,execute,delete";
 permission java.io.FilePermission "c:\\temp", "read,write,execute,delete";
 permission java.io.FilePermission "c:\\temp\\-", "read,write,execute,delete";
 permission java.io.FilePermission "c:\\windows\\temp", "read,write,execute,delete";
 permission java.io.FilePermission "c:\\windows\\temp\\-", "read,write,execute,delete";
 // Deleted the rest
};

86

RMI Security

 Security is a serious concern since
executable code is being downloaded
from remote location

 In RMI, SecurityManager has to be
installed in order to be able to download
any code from remote location
 Without its installation, RMI will search for

class files only from local classpath
 The security policy file further specifies

the “permission control”

87

RMI Security

 RMI client needs to install security
manager because it needs to download
Stub file of RMI object

 A simple RMI server might not need to
install security manager if it does not
need to download class files from remote
location
 It is still good practice to install it anyway

Review Points

89

Locating Remote Objects

client
server

registry

RMIRMI

90

Remote Communication

client
server

registry

RMIRMI

RMI

91

Loading Classes

client
server

web server
web server

registry

URL protocol

URL protocol

RMI

URL protocol

RMI

RMI

92

Method Invocation

reference

RMI runtimeRMI runtime

stub

caller’s VM remote object’s VM

remote object

dispatcher

93

RMI Limitation

 Client and server paradigm
 Client has to know about the server

 where the server is
 how to reach the server
 what the server can do

 If the server becomes unavailable, the client
generally fails too

94

Summary

 RMI is for invoking methods of remote
Java object

 Enables the movement of data and code
 Data (State of object) movement via

serialized object
 Code movement via class downloading

95

 Thank you!Thank you!

Sang ShinSang Shin
Michèle GarocheMichèle Garoche

http://www.javapassion.comhttp://www.javapassion.com
““Learn with Passion!”Learn with Passion!”

106

	Slide 1
	Topics
	Slide 3
	What is RMI?
	Slide 5
	Why RMI?
	Slide 7
	Architectural Components
	Remote Interface
	Slide 10
	Stub and Skeleton
	Slide 12
	Slide 13
	Remote Object
	Slide 15
	RMI Communication Model
	RMI Control Flow
	Slide 18
	Slide 19
	Serialization
	Marshaling and Unmarshaling
	Serialization in RMI
	Serialization in RMI
	Example
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Dynamic Class Loading
	Slide 42
	Who Does Provide Codebase Annotation Information?
	When Does the Codebase Annotation occurs?
	RMI Server and Client Deployment Scenario
	Slide 46
	Dynamic Class Loading
	Review Points
	Slide 49
	 Codebase
	What is Codebase?
	Two types of Codebase
	Behind the Scene Activities
	RMI codebase forms
	RMI codebase
	RMI codebase examples
	Slide 57
	Typical Causes of Problems
	Typical RMI codebase Symptom
	Slide 60
	Slide 61
	Implementation Guideline
	Slide 63
	Trouble-shooting methods
	Running HTTP server in verbose mode
	-Djava.rmi.loader.logLevel=VERBOSE
	javap
	Slide 68
	Review Points
	ClassLoader Delegation
	Slide 71
	Classloader Hierarchy
	Slide 73
	 Activation
	Activation
	Control Flow of Activation
	Slide 77
	RMID
	Activation Trouble-shooting
	 RMI Tunneling
	RMI Tunneling
	RMI Security
	Java Security
	Security Policy Example
	Security Policy Example: for Reggie
	RMI/Jini Security
	Slide 87
	Review Points
	Locating Remote Objects
	Remote Communication
	Loading Classes
	Method Invocation
	RMI Limitation
	Summary
	Slide 95

