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Topics

• Controller and actions

• Scopes

• Models and views

• Rendering

• Controller interceptors

• Redirecting

• Data binding (params)

• XML and JSON responses 
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Method vs Closure as Actions

• Actions in a controller can be in the form of 
> method or
> closure

• Methods are preferred (over closure) because they are 
> Memory efficient
> Allow use of stateless controllers (singleton scope)
> You can override actions in subclasses 
> Methods can be intercepted with standard proxying 

mechanisms, something that is complicated to do with 
closures – this is because, in closure, the actions are in the 
form of fields
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Default URI & Default Action

• A controller has a default URI that maps to the root URI of 
the controller
> BookController has default URI of /book
> AuthorController has default URI of /author

• The default action that is called when the default URI is 
requested (since no action is specified in the URI) is 
dictated by the following rules:
> If there is only one action, it's the default
> If there is “index” action, it's the default
> Alternatively, default action can be set with “defaultAction” 

property
> static defaultAction = "myDefaultAction"
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Lab:Lab:
Exercise 1: Controllers & Actions Exercise 1: Controllers & Actions 

5630_grails_controller1.zip5630_grails_controller1.zip
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Scopes 

• Scopes (sometimes called scope objects) are hash-like objects 
where you can store data

• Types of Scope objects available to controllers
> servletContext, session, request, params, flash

• Accessing data in scope objects
class StudentController {
    def my_action() {
        def app = servletContext["app"]    // servletContext.app
        def loggedUser = session["logged_user"] // session.logged_user
        def foo = request["foo"]    // request.foo
        def name = params["name"]    // params.name
    }
}
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Flash Scope 

• Temporary store to make attributes available for this request 
and the next request only. Afterward, the attributes are cleared

• Useful for setting a message directly before redirecting

def delete() {
    def b = Book.get(params.id)
    if (!b) {
        // This flash message is available to the redirected page then gets cleared
        flash.message = "User not found for id ${params.id}"
        redirect(action:'list')
    }
    … // remaining code
}
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Controllers Have Associated Scopes 

• Types of controller scope
> prototype (default)
> A new controller will be created for each request 
> It is thread-safe since each request happens on its own controller

> session
>One controller for the scope of a user session
> static scope = “session”

> singleton
>Only one instance of the controller ever exists (recommended for 

actions as methods)
> static scope = "singleton"
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Lab:Lab:
Exercise 2:  ScopesExercise 2:  Scopes

5630_grails_controller1.zip5630_grails_controller1.zip
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Returning a Model Object 

• A model is a Map object that the view uses when rendering
> The keys within that Map correspond to variable names 

accessible by the view

// Return “book” as a key, which can be referenced in the view 
def show() {
    [book: Book.findByTitle(params.title)]
}

<!-- Display information on the book -->
<body>
    Title = ${fieldValue(bean: book, field: "title")},
    Published Date = ${fieldValue(bean: book, field: "publishDate")}
</body

Controller
Action

View
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Returning Model Implicitly

• If no explicit model is returned, the controller's properties will 
be used as the model implicitly

• Use it only when controller is in “prototype” scope where new 
instance of a controller gets created per a request

• Not recommended practice – hard to read code
// the books and authors properties will be available in the view
class BookController {
    List books
    List authors

    def list() {
        books = Book.list()
        authors = Author.list()
    }
}
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Returning ModelAndView Object

• You can return an instance of the Spring ModelAndView class 
> ModelAndView object can be set with view and model objects

import org.springframework.web.servlet.ModelAndView

def index() {
    // get some books just for the index page, perhaps your favorites
    def favoriteBooks = ...

    // forward to the list view to show them
    new ModelAndView("/book/list", [ bookList : favoriteBooks ])
}
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Selecting a View

• Implicit view selection
> By default, Grails selects a view with the same name of the action

• Explicit view selection
> To render a different view, use “render” method with “view” argument
def show() {
    def map = [book: Book.get(params.id)]
   // Select grails-app/views/book/display.gsp
    render(view: "display", model: map)
}

def show() {
    def map = [book: Book.get(params.id)]
    // Select grails-app/views/shared/display.gsp
    render(view: "/shared/display", model: map)
}
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Lab:Lab:
Exercise 3:  Models & ViewsExercise 3:  Models & Views
5630_grails_controller1.zip5630_grails_controller1.zip
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Rendering via “render” method (1)

• Sometimes it's easier (for example with Ajax applications) to 
render snippets of text or code to the response directly from 
the controller (instead of selecting a view)
// render text
render "Hello World!"

// render some text with encoding and content type
render(text: "<a><b>hello</b></a>", contentType: "text/xml", 
                                                          encoding: "UTF-8")
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Rendering via “render” method (2)

// render a specific view
render(view: 'show')

// render some markup
render {
   for (b in books) {
      div(id: b.id, b.title)
   }
}

// render a template for each item in a collection
render(template: 'book_template', collection: Book.list())
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Lab:Lab:
Exercise 4:  RenderingExercise 4:  Rendering

5630_grails_controller1.zip5630_grails_controller1.zip
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Controller (or Action) Interceptors

• Controller interceptors are used to intercept processing based 
on either request, session or application state

• There are currently two types of interceptors
> before
> after

• If your interceptor is likely to apply to more than one controller, 
you are almost certainly better off writing a Filter
> Filters can be applied to multiple controllers or URIs without the 

need to change the logic of each controller
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Before Interceptor Example #1

    // This interceptor is executed before all actions
    def beforeInterceptor = {
        println "Before calling action ${actionUri}"
    }

    // This interceptor is executed after all actions
    def afterInterceptor = {
        println "After calling action ${actionUri}"
    }
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Before Interceptor Example #2
 // The “beforeInterceptor” defines an interceptor that is used on all actions 
// except the “login” action and it executes the “auth” method.
// (In this example, the “auth” method needs to be converted to closure
//  via method closure operator since value of “action” key has to be an object) 
def beforeInterceptor = [action: this.&auth, except: 'login']

// defined with private scope, so it's not considered an action
private auth() {
    if (!session.user) {
        redirect(action: 'login')
        return false
    }
}

def login() {
    // display login page
}
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After Interceptor Examples
// The “after” interceptor takes the resulting model as an argument 
// and can hence manipulate the model or response.
def afterInterceptor = { model ->
    println "Tracing action ${actionUri}"
}

// An after interceptor may also modify the Spring MVC ModelAndView 
// object prior to rendering
def afterInterceptor = { model, modelAndView ->
    println "Current view is ${modelAndView.viewName}"
    if (model.someVar) modelAndView.viewName =
                                                 "/mycontroller/someotherview"
    println "View is now ${modelAndView.viewName}"
}
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Interception Conditions
// Executes the interceptor except the specified action(s):
def beforeInterceptor = [action: this.&auth, except: ['login', 'register']]

// Executes the interceptor for only the specified action(s):
def beforeInterceptor = [action: this.&auth, only: ['secure']]
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Lab:Lab:
Exercise 5: Controller Interceptors Exercise 5: Controller Interceptors 

5630_grails_controller1.zip5630_grails_controller1.zip
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Redirecting 

• Actions can be redirected using the redirect controller method:
class OverviewController {
    def login() {}

    def find() {
        // If a user has not logged in yet, redirect the user to login page
        if (!session.user)
            redirect(action: 'login')
            return
        }
        …
    }
}
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More Redirecting examples (1) 
// Parameters can optionally be passed 
redirect(action: 'myaction', params: [myparam: "myvalue"])

// Pass request parameters
redirect(action: "next", params: params)

//  Include a fragment in the target URI: "/myapp/test/show#profile"
redirect(controller: "test", action: "show", fragment: "profile")
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More Redirecting examples (2)
// Call the login action within the same class
redirect(action: 'login')

// Also redirects to the index action in the home controller
redirect(controller: 'home', action: 'index')

// Redirect to an explicit URI relative to the application context path
redirect(uri: "/login.html")

// Redirect to a full URL
redirect(url: "http://jpassion.com")
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Redirecting & Double-submit problem 

• Without redirecting, refreshing the “Create” page will cause the 
same request being sent again – this is “double-submit” 
problem

    def save() {
        def teacherInstance = new Teacher(params)
        if (!teacherInstance.save(flush: true)) {
            render(view: "create", model: [teacherInstance: teacherInstance])
            return
        }

        flash.message = message(code: 'default.created.message', 
           args: [message(code: 'teacher.label', default: 'Teacher'), teacherInstance.id])
        redirect(action: "show", id: teacherInstance.id)
    }
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Lab:Lab:
Exercise 5: Redirecting Exercise 5: Redirecting 

5630_grails_controller.1zip5630_grails_controller.1zip



Data BindingData Binding
(params)(params)
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What is Data Binding?

• Data binding is the act of "binding" incoming request 
parameters onto the properties of an object 

• Data binding performs type conversion
> Request parameters are typically delivered by a form 

submission and they are always strings while the properties of 
a Groovy or Java object may well not be

> Grails perform type conversion during data binding
> Type conversion errors could occur

• Grails uses Spring's underlying data binding capability to 
perform data binding
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Binding Request Data to Model
// The data binding happens within the code of “new Book(params)”. 
// By passing the params object to the domain class constructor, Grails
// automatically recognizes that you are trying to bind request 
// parameters to Book object.
def save() {
    def book = new Book(params)
    book.save()
}

// Or you can use the properties property to perform data binding onto 
// an existing instance
def save() {
    def book = Book.get(params.id)
    book.properties = params
    book.save()
}



38

Mapping Req. Params to Action Args(1)

• Controller action arguments are subject to request 
parameter data binding as well

• There are 2 categories of controller action arguments
> Complex types
> Treated as command objects

> Basic object types
> Supported types are the 8 primitives, their corresponding type 

wrappers and java.lang.String
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Mapping Req. Params to Action Args(2)

• The default behavior is to map request parameters to 
action arguments by name:

class AccountingController {
   // accountNumber will be initialized with the value of params.accountNumber
   // accountType will be initialized with params.accountType
   def displayInvoice(String accountNumber, int accountType) {
       // …
   }
}
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Type Conversion Errors

• Grails will retain type conversion errors inside the errors 
property of a Grails domain class
// Let's say we have Book domain class with URL type field
class Book {
    …
    URL publisherURL
}

// Given the following request coming in
/book/save?publisherURL=a-bad-url

def b = new Book(params)
if (b.hasErrors()) {
    println "The value ${b.errors.getFieldError('publisherURL').rejectedValue}" +
            " is not a valid URL!"
}
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Lab:Lab:
Exercise 7: Data binding (params) Exercise 7: Data binding (params) 

5630_grails_controller1.zip5630_grails_controller1.zip



XML and JSON XML and JSON 
ResponsesResponses
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Using “render” method to output XML

• The “render” method can be 
passed a block of code to do 
mark-up building in XML

def list() {
    def results = Book.list()

    render(contentType: "text/xml") {
        books {
            for (b in results) {
                book(title: b.title)
            }
        }
    }
}

• Generates

<books>
    <book title="The Stand" />
    <book title="The Shining" />
</books>
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Using “render” method to output JSON

• The render method can be 
passed a block of code to do 
mark-up building in JSON

def list() {
    def results = Book.list()

    render(contentType: "text/json") {
        books = array {
            for (b in results) {
                book title: b.title
            }
        }
    }
}

• Generates

[
    {title:"The Stand"},
    {title:"The Shining"}
]
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Automatic XML Marshalling

• Grails also supports automatic marshalling of domain classes 
to XML 
render Book.list() as XML

<?xml version="1.0" encoding="ISO-8859-1"?>
<list>
  <book id="1">
    <author>Stephen King</author>
    <title>The Stand</title>
  </book>
  <book id="2">
    <author>Stephen King</author>
    <title>The Shining</title>
  </book>
</list>
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Automatic JSON Marshalling

• Grails also supports automatic marshalling of domain classes 
to JSON 
render Book.list() as JSON

[
    {"id":1,
     "class":"Book",
     "author":"Stephen King",
     "title":"The Stand"},
    {"id":2,
     "class":"Book",
     "author":"Stephen King",
     "releaseDate":new Date(1194127343161),
     "title":"The Shining"}
 ]
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Lab:Lab:
Exercise 8: XML & JSON Responses Exercise 8: XML & JSON Responses 

5630_grails_controller1.zip5630_grails_controller1.zip
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Learn with Passion!Learn with Passion!
JPassion.comJPassion.com
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