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Topics
• What is Domain class & GORM?

• CRUD Operations

• Dynamic finders

• Validations

• Error messages

• Custom O/R mapping

• Events

• Automatic timestamping
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What is Domain Class?

• Represents Model (of MVC)
> Things to be manipulated

• Domain objects holds state
> Through properties

• Domain class has a corresponding table 
> Domain object has a corresponding row
> Properties of Domain class have matching columns
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What is GORM?

• GORM (Grails Object Relational Mapping) provides 
mapping between domain objects and database tables
> Accessing, saving, creating, updating operations in your Grails 

code are performed by GORM

• Under the hood, GORM uses Hibernate by default
> Other DB technologies are also supported: MongoDB, CouchDB, 

Redis, etc 

• Leverages dynamic nature of Groovy 
> Dynamic typing, meta-programming, closure, etc

• Convention of configuration
> Example: Name of Domain class is the name of the table
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Steps for Creating Domain Class

• Step #1: Create Domain class
grails create-domain-class org.jpassion.Student

• Step #2: Add properties to the Domain class

• Step #3: Add validation constraints

• Step #4: Add relationships to other Domain classes 

• Step #5: Add custom ORM features 
> Custom table/column names, Caching strategy, Locking, Fetching, 

etc 

• Step #6: Add event handling



Creation, ReadCreation, Read
Update, DeleteUpdate, Delete
(CRUD) Operations(CRUD) Operations
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CRUD Operations
• Create - Grails transparently 

adds an implicit id property to 
your domain class which you 
can use for retrieval:
def student = 
new Student(name: "David", 
                     age: 22)
student.save()

• Read (more info. next slide)
def s1 = Student.get(1)
def s2 = Student.read(2)
def s3 = Student.load(3)

• Update
def s = Student.get(1)
s.name = "Bob"
s.save()

• Delete
def s= Student.get(1)
s.delete(flush:true)
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3 Schemes of Read Operation

• Student.get(1)
> Automatic dirty detection by Hibernate is on as default
> Change can be persisted automatically via Hibernate dirty 

detection (during flush and commit)

• Student.read(1)
> Similar to the get method except that automatic dirty detection is 

disabled  (during flush and commit)
> The change to the instance after read() will not be persisted until 

explicit save() is called- use this if you want to make sure you don't 
accidentally persist unintended change

• Student.load(1)
> Returns a proxy instance 
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Grails Console

• Extended version of the Groovy console but with Grails runtime

• Unlike “Rails console”, it does not share the same runtime with 
running Grails app
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Database Console

• Browser based H2 db manager which comes with Grails

• http://locahost:8080/<app-context>/dbconsole



 12

Bootstrapping

• grails-app/conf/BootStrap.groovy
> init(..) gets executed when Grails starts
> destroy(..) gets executed when Grails shuts down

• Used for any start-up and clean-up tasks
> Test data creation can be done in init(..) 
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Lab:Lab:

Exercise 1: CRUD Operations Exercise 1: CRUD Operations 
Exercise 2: Study Scaffolding CodeExercise 2: Study Scaffolding Code

5626_grails_domain.zip5626_grails_domain.zip
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Getting Domain Instances

• Listing instances using list(..) method
def books = Book.list()
def books = Book.list(offset:10, max:20)
def books = Book.list(sort:"name", order:"asc")

• Retrieval by Primary key or keys
def book = Book.get(23)
def books = Book.getAll(23, 93, 81)
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Dynamic Finders

• A dynamic finder looks like a static method invocation, but 
the methods themselves don't actually exist in any form at 
the code level

• They get constructed dynamically during runtime via 
Groovy's missingMethod scheme
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Dynamic Finders Examples

• Let's say we have Domain class
class Student {
    String name
    Date birthday
    int age
} 

• Examples of dynamic finders
def student = Student.findByName("Sang Shin")
student = Student.findAllByNameLike("Sang S%")
student = Student.findAllByBirthdayBetween( firstDate, secondDate )
student = Student.findAllByBirthdayGreaterThan( someDate )
student = 
Student.findByNameLikeOrBirthdayLessThan( "%Something%", 
someDate )  
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Comparators used in Dynamic Finders

• InList - In the list of given values

• LessThan - less than the given value

• LessThanEquals - less than or equal a give value

• GreaterThan - greater than a given value

• GreaterThanEquals - greater than or equal a given value

• Like - Equivalent to a SQL like expression

• Ilike - Similar to a Like, except case insensitive

• NotEqual - Negates equality

• Between - Between two values (requires two arguments)

• IsNotNull - Not a null value (doesn't require an argument)

• IsNull - Is a null value (doesn't require an argument)
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Pagination & Sorting

• The same pagination and sorting parameters available on 
the list method can also be used with dynamic finders by 
supplying a map as the final parameter

def students = 
  Student.findAllByNameLike("Sa%", [max:3, 
                                                               offset:2, 
                                                               sort:"age",
                                                               order:"desc"])



 20

Lab:Lab:

Exercise 3: Dynamic FindersExercise 3: Dynamic Finders
5626_grails_domain.zip5626_grails_domain.zip



ValidationsValidations
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Declaring Validation Constraints

• Grails provides a unified and convenient way to define 
validation "constraints" in the domain class
class User {
    String login
    String password
    String email
    Integer age
    static constraints = {
        login(size:5..15, unique:true)
        password(size:5..15)
        email(email:true, blank:false)
        age(min:18, nullable:false)
    }
} 



 23

Built-in Constraints

• blank:true, nullable:true

• creditCard:true

• display:false (Hides the field in 
create.gsp and edit.gsp)

• email:true

• password:true

• inList:[“foo”, “bar”, “x”]

• matches:”[a-zA-Z]+”

• min:0, max:100

• size:1..10

• range:0..10

• scale:5

• unique:true

• url:true

• notEqual:”Foo”

• validator: {return(it%2) == 0}
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Validation Basics

• You can call the validate method on any instance anytime

• Every domain object also has errors property
> Provides methods to navigate the validation errors and also 

retrieve the original values.

def student =  new User(params)
if(student.validate()) {
    // do something with student
}
else {
    student.errors.allErrors.each {
        println it
    }
}
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Two Validation Phases

• Within Grails there are essentially 2 phases of validation
> The first phase: data binding phase (type conversion phase)
> The second phase: domain constraints checking phase
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Data Binding Phase Validation

• The first phase is data binding which occurs when you bind 
request parameters onto a domain instance 

• Type conversion error is detected in this phase

// Type conversion occurs
def student = new Student(params)

// You can detect type conversion error
if(student.hasErrors()) {
    if(student.errors.hasFieldErrors("login")) {
        println student.errors.getFieldError("login").rejectedValue
    }
}
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Domain Constraints Checking Phase

• The second phase of validation happens when you call 
validate or save method. This is when Grails will validate 
the bound values against the constraints you defined. 

if(student.save()) {
    return student
}
else {
    student.errors.allErrors.each {
        println it
    }
}
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Lab:Lab:

Exercise 4: ValidationExercise 4: Validation
5626_grails_domain.zip5626_grails_domain.zip



Error MessagesError Messages
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Constraints & Message Codes

• The codes themselves are dictated by a convention
> If a constraint was violated, Grails will, by convention, look for a 

message code in the form
> [Class Name].[Property Name].[Constraint Code]

• In the case of the blank constraint this would be 
user.login.blank so you would need a message such as the 
following in your grails-app/i18n/messages.properties file:
user.login.blank=Your login name must be specified!
user.login.unique=Fool! value [{2}] must be unique
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Lab:Lab:

Exercise 5: Custom MessagingExercise 5: Custom Messaging
5626_grails_domain.zip5626_grails_domain.zip



Custom O/R MappingCustom O/R Mapping
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Custom O/R Mapping

• Table and column names

• Caching strategy

• Inheritance strategy

• Custom database identity

• Composite primary keys

• Database indices

• Optimistic locking and versioning

• Eager and Lazy fetching

• Custom cascade behavior

We will cover most of 
these in “Association” 
presentation.
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Custom Table and Column Names

class Person {
  String firstName
  static mapping = {
      table 'people'
      firstName column:'First_Name'
  }
}
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Lab:Lab:

Exercise 7: Custom O/R MappingExercise 7: Custom O/R Mapping
5626_grails_domain.zip5626_grails_domain.zip



EventsEvents
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Events

• beforeInsert

• beforeUpdate

• beforeDelete

• beforeValidate

• afterInsert

• afterUpdate

• afterDelete

• onLoad - Executed when an object is loaded from the 
database
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beforeInsert & beforeUpdate Event

class Person {

   Date dateCreated
   Date lastUpdated

   def beforeInsert() {
       dateCreated = new Date()
   }
   def beforeUpdate() {
       lastUpdated = new Date()
   }
}
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Lab:Lab:

Exercise 8: EventsExercise 8: Events
5626_grails_domain.zip5626_grails_domain.zip



Automatic Automatic 
TimestampingTimestamping
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Automatic Timestamping

• By merely defining a lastUpdated and dateCreated property 
these will be automatically updated for you by GORM.

class Person {

   Date dateCreated
   Date lastUpdated

   // The following code is not needed because GORM
   // does automatic timestamping
   //def beforeInsert() {
   //    dateCreated = new Date()
   //}
   //def beforeUpdate() {
   //    lastUpdated = new Date()
   //}
}
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Learn with Passion!Learn with Passion!
JPassion.comJPassion.com
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