
1

Domain Class &Domain Class &
GORM Part IGORM Part I

Sang ShinSang Shin
JPassion.comJPassion.com

““Learn with Passion!”Learn with Passion!”

1

 2

Topics
• What is Domain class & GORM?

• CRUD Operations

• Dynamic finders

• Validations

• Error messages

• Custom O/R mapping

• Events

• Automatic timestamping

What is DomainWhat is Domain
Class & GORM?Class & GORM?

 4

What is Domain Class?

• Represents Model (of MVC)
> Things to be manipulated

• Domain objects holds state
> Through properties

• Domain class has a corresponding table
> Domain object has a corresponding row
> Properties of Domain class have matching columns

 5

What is GORM?

• GORM (Grails Object Relational Mapping) provides
mapping between domain objects and database tables
> Accessing, saving, creating, updating operations in your Grails

code are performed by GORM

• Under the hood, GORM uses Hibernate by default
> Other DB technologies are also supported: MongoDB, CouchDB,

Redis, etc

• Leverages dynamic nature of Groovy
> Dynamic typing, meta-programming, closure, etc

• Convention of configuration
> Example: Name of Domain class is the name of the table

 6

Steps for Creating Domain Class

• Step #1: Create Domain class
grails create-domain-class org.jpassion.Student

• Step #2: Add properties to the Domain class

• Step #3: Add validation constraints

• Step #4: Add relationships to other Domain classes

• Step #5: Add custom ORM features
> Custom table/column names, Caching strategy, Locking, Fetching,

etc

• Step #6: Add event handling

Creation, ReadCreation, Read
Update, DeleteUpdate, Delete
(CRUD) Operations(CRUD) Operations

 8

CRUD Operations
• Create - Grails transparently

adds an implicit id property to
your domain class which you
can use for retrieval:
def student =
new Student(name: "David",
 age: 22)
student.save()

• Read (more info. next slide)
def s1 = Student.get(1)
def s2 = Student.read(2)
def s3 = Student.load(3)

• Update
def s = Student.get(1)
s.name = "Bob"
s.save()

• Delete
def s= Student.get(1)
s.delete(flush:true)

 9

3 Schemes of Read Operation

• Student.get(1)
> Automatic dirty detection by Hibernate is on as default
> Change can be persisted automatically via Hibernate dirty

detection (during flush and commit)

• Student.read(1)
> Similar to the get method except that automatic dirty detection is

disabled (during flush and commit)
> The change to the instance after read() will not be persisted until

explicit save() is called- use this if you want to make sure you don't
accidentally persist unintended change

• Student.load(1)
> Returns a proxy instance

 10

Grails Console

• Extended version of the Groovy console but with Grails runtime

• Unlike “Rails console”, it does not share the same runtime with
running Grails app

 11

Database Console

• Browser based H2 db manager which comes with Grails

• http://locahost:8080/<app-context>/dbconsole

 12

Bootstrapping

• grails-app/conf/BootStrap.groovy
> init(..) gets executed when Grails starts
> destroy(..) gets executed when Grails shuts down

• Used for any start-up and clean-up tasks
> Test data creation can be done in init(..)

 13

Lab:Lab:

Exercise 1: CRUD Operations Exercise 1: CRUD Operations
Exercise 2: Study Scaffolding CodeExercise 2: Study Scaffolding Code

5626_grails_domain.zip5626_grails_domain.zip

Dynamic FindersDynamic Finders

 15

Getting Domain Instances

• Listing instances using list(..) method
def books = Book.list()
def books = Book.list(offset:10, max:20)
def books = Book.list(sort:"name", order:"asc")

• Retrieval by Primary key or keys
def book = Book.get(23)
def books = Book.getAll(23, 93, 81)

 16

Dynamic Finders

• A dynamic finder looks like a static method invocation, but
the methods themselves don't actually exist in any form at
the code level

• They get constructed dynamically during runtime via
Groovy's missingMethod scheme

 17

Dynamic Finders Examples

• Let's say we have Domain class
class Student {
 String name
 Date birthday
 int age
}

• Examples of dynamic finders
def student = Student.findByName("Sang Shin")
student = Student.findAllByNameLike("Sang S%")
student = Student.findAllByBirthdayBetween(firstDate, secondDate)
student = Student.findAllByBirthdayGreaterThan(someDate)
student =
Student.findByNameLikeOrBirthdayLessThan("%Something%",
someDate)

 18

Comparators used in Dynamic Finders

• InList - In the list of given values

• LessThan - less than the given value

• LessThanEquals - less than or equal a give value

• GreaterThan - greater than a given value

• GreaterThanEquals - greater than or equal a given value

• Like - Equivalent to a SQL like expression

• Ilike - Similar to a Like, except case insensitive

• NotEqual - Negates equality

• Between - Between two values (requires two arguments)

• IsNotNull - Not a null value (doesn't require an argument)

• IsNull - Is a null value (doesn't require an argument)

 19

Pagination & Sorting

• The same pagination and sorting parameters available on
the list method can also be used with dynamic finders by
supplying a map as the final parameter

def students =
 Student.findAllByNameLike("Sa%", [max:3,
 offset:2,
 sort:"age",
 order:"desc"])

 20

Lab:Lab:

Exercise 3: Dynamic FindersExercise 3: Dynamic Finders
5626_grails_domain.zip5626_grails_domain.zip

ValidationsValidations

 22

Declaring Validation Constraints

• Grails provides a unified and convenient way to define
validation "constraints" in the domain class
class User {
 String login
 String password
 String email
 Integer age
 static constraints = {
 login(size:5..15, unique:true)
 password(size:5..15)
 email(email:true, blank:false)
 age(min:18, nullable:false)
 }
}

 23

Built-in Constraints

• blank:true, nullable:true

• creditCard:true

• display:false (Hides the field in
create.gsp and edit.gsp)

• email:true

• password:true

• inList:[“foo”, “bar”, “x”]

• matches:”[a-zA-Z]+”

• min:0, max:100

• size:1..10

• range:0..10

• scale:5

• unique:true

• url:true

• notEqual:”Foo”

• validator: {return(it%2) == 0}

 24

Validation Basics

• You can call the validate method on any instance anytime

• Every domain object also has errors property
> Provides methods to navigate the validation errors and also

retrieve the original values.

def student = new User(params)
if(student.validate()) {
 // do something with student
}
else {
 student.errors.allErrors.each {
 println it
 }
}

 25

Two Validation Phases

• Within Grails there are essentially 2 phases of validation
> The first phase: data binding phase (type conversion phase)
> The second phase: domain constraints checking phase

 26

Data Binding Phase Validation

• The first phase is data binding which occurs when you bind
request parameters onto a domain instance

• Type conversion error is detected in this phase

// Type conversion occurs
def student = new Student(params)

// You can detect type conversion error
if(student.hasErrors()) {
 if(student.errors.hasFieldErrors("login")) {
 println student.errors.getFieldError("login").rejectedValue
 }
}

 27

Domain Constraints Checking Phase

• The second phase of validation happens when you call
validate or save method. This is when Grails will validate
the bound values against the constraints you defined.

if(student.save()) {
 return student
}
else {
 student.errors.allErrors.each {
 println it
 }
}

 28

Lab:Lab:

Exercise 4: ValidationExercise 4: Validation
5626_grails_domain.zip5626_grails_domain.zip

Error MessagesError Messages

 30

Constraints & Message Codes

• The codes themselves are dictated by a convention
> If a constraint was violated, Grails will, by convention, look for a

message code in the form
> [Class Name].[Property Name].[Constraint Code]

• In the case of the blank constraint this would be
user.login.blank so you would need a message such as the
following in your grails-app/i18n/messages.properties file:
user.login.blank=Your login name must be specified!
user.login.unique=Fool! value [{2}] must be unique

 31

Lab:Lab:

Exercise 5: Custom MessagingExercise 5: Custom Messaging
5626_grails_domain.zip5626_grails_domain.zip

Custom O/R MappingCustom O/R Mapping

 33

Custom O/R Mapping

• Table and column names

• Caching strategy

• Inheritance strategy

• Custom database identity

• Composite primary keys

• Database indices

• Optimistic locking and versioning

• Eager and Lazy fetching

• Custom cascade behavior

We will cover most of
these in “Association”
presentation.

 34

Custom Table and Column Names

class Person {
 String firstName
 static mapping = {
 table 'people'
 firstName column:'First_Name'
 }
}

 35

Lab:Lab:

Exercise 7: Custom O/R MappingExercise 7: Custom O/R Mapping
5626_grails_domain.zip5626_grails_domain.zip

EventsEvents

 37

Events

• beforeInsert

• beforeUpdate

• beforeDelete

• beforeValidate

• afterInsert

• afterUpdate

• afterDelete

• onLoad - Executed when an object is loaded from the
database

 38

beforeInsert & beforeUpdate Event

class Person {

 Date dateCreated
 Date lastUpdated

 def beforeInsert() {
 dateCreated = new Date()
 }
 def beforeUpdate() {
 lastUpdated = new Date()
 }
}

 39

Lab:Lab:

Exercise 8: EventsExercise 8: Events
5626_grails_domain.zip5626_grails_domain.zip

Automatic Automatic
TimestampingTimestamping

 41

Automatic Timestamping

• By merely defining a lastUpdated and dateCreated property
these will be automatically updated for you by GORM.

class Person {

 Date dateCreated
 Date lastUpdated

 // The following code is not needed because GORM
 // does automatic timestamping
 //def beforeInsert() {
 // dateCreated = new Date()
 //}
 //def beforeUpdate() {
 // lastUpdated = new Date()
 //}
}

42

Learn with Passion!Learn with Passion!
JPassion.comJPassion.com

42

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

