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Topics

• Basic concepts
> Heap dump
> Shallow vs. Retained heap
> Dominator tree
> GC (Garbage Collection) Roots
> Incoming & outgoing references
> Accumulation point

• How to detect memory leak

• Class loader memory leak example
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HeapdumpHeapdump
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What is a Heap Dump?

• A heap dump is a snapshot of the memory of a Java process at 
a certain moment of time

• Heap dump format
> HPROF binary format (most common)
> IBM system dumps (after pre-processing them)
> IBM portable heap dumps (PHD)

● Usually a full GC is triggered before the heap dump is written so 
it contains information about the remaining objects
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What Does a HeapDump Contain?

• All Objects
> Class, field, primitive values and references

• All Classes
> Classloader, name, super class, static fields

• Thread stacks and local variables
> The call-stacks of threads at the moment of the snapshot, and per-

frame information about local objects

• Garbage Collection(GC) roots
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A Heap Dump Does NOT Tell You..

• Where an object was allocated

• When an object was created

• How many objects were garbage collected

• It is indeed just a snapshot
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A Heap Dump Can Help You

• Analyze the reason for an OutOfMemoryError

• Analyze the memory footprint of an application

• Debug non-memory related problems too
> Why an application is non-responsive? (Through threads analysis)
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How to Get a Heap Dump

• You can trigger a heap dump (on-demand heap dumping)
> Within a tool (jconsole, Eclipse Memory Analyzer, NetBeans, 

Eclipse, JMC, etc)
> jmap -dump:format=b,file=<filename.hprof> <pid>

• Application started with following JVM option creates a Heap 
dump when OutOfMemoryError occurs
> -XX:+HeapDumpOnOutOfMemoryError 
> There is no negative performance impact on the VM

• Application started with following JVM option creates a Heap 
dump when CTRL+BREAK is pressed
> -XX:+HeapDumpOnCtrlBreak
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How to Get a “Good” Heap Dump

• When memory is exhausted, the leak will occupy the most of the 
heap space

• Ensure big enough heap space, this will make the leak easier to 
find
> The memory leak pattern looks move obvious
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Lab:Lab:

Exercise 1: Acquiring a HeapdumpExercise 1: Acquiring a Heapdump
5117_memory_mat.zip5117_memory_mat.zip



11

Shallow HeapShallow Heap
vs.vs.

Retained HeapRetained Heap
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Shallow Heap vs. Retained Heap

• Shallow heap is the memory consumed by one object
> Its size in the heap
> An object needs 32 or 64 bits (depending on the OS architecture) 

per reference, 4 bytes per Integer, 8 bytes per Long, etc.
> Depending on the heap dump format, the size may be adjusted 

(e.g. aligned to 8, etc...) to model better the real consumption of 
the VM

• Retained set of X is the set of objects which would be removed 
by GC when X is GC'ed
> Retained heap of X is the sum of shallow sizes of all objects in the 

retained set of X, i.e. memory kept alive by X
> Amount of heap memory that will be freed when X is garbage 

collected
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Shallow Heap vs. Retained Heap

Shallow heap Retained heap
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Dominator TreeDominator Tree
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What is and Why Dominator Tree?

• A dominator tree is built out of the object graph. 

• The transformation of the “Object reference graph” into a 
“Dominator tree” allows you to easily identify the biggest chunks 
of “retained memory” and the keep-alive dependencies among 
objects. 

Object
reference

graph

Dominator
Tree
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Objects in Dominator Tree

• Each object is the immediate 
dominator of its children, so 
dependencies between the 
objects are easily identified.

• An object x dominates an 
object y if every path in the 
object graph from the start 
(or the root) node to y must 
go through x

• “C” is immediate dominator of 
“D”, “E”, and “H”

• “C” is dominator of  “D”, “E”, 
“H”, “F”, “G”
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Dominator Tree & Retained Set & Heap

• The objects belonging to the 
sub-tree of x (i.e. the objects 
dominated by x ) represent 
the retained set of x 

• If “C” is GC'ed, the all the 
retained heap space of it will 
be also GC'ed

• The retained heap space of 
“C” equals the collection of 
all shallow heap spaces of its 
chidren - “D”, “E”, “H”, “F”, 
“G”

T
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GC (Garbage GC (Garbage 
Collection) RootsCollection) Roots
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What is & Why Garbage Collection Roots?

• A Garbage Collection root (GC root) is an object that is 
accessible from outside the heap
> They are root owner (root dominator) of other objects in the heap

• The Find Nearest GC Root feature can help you track down 
memory leaks by showing the owner chain of the references 
that prevents an object from being garbage collected.  

• Example scenarios where an object is a GC root:
> Thread – A started, but not stopped, thread
> System class - Class loaded by bootstrap/system class loader. For 

example, everything from the rt.jar like java.util.*
> ...
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Path to GC Root



21

Other Misc. ConceptsOther Misc. Concepts
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Incoming & Outgoing References

• Outgoing references
> Show what objects the current object is making references to

• Incoming references
> Shows what objects are making references to the current object
> Starts from GC Root
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Incoming References
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Accumulation Point

• Shows significant drop in the retained size – good candidate 
where memory leak starts to occur
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How to Analyze a How to Analyze a 
Heapdump? (How to Heapdump? (How to 
find Memory Leak?)find Memory Leak?)
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Schemes of Analyzing Heap Dump

• Find the biggest objects
> Good starting point

• Analyze why they are kept in memory
> Someone has a reference to the objects
> Incoming references, GC Root

• Analyze what makes them big
> Check retained heap 
> Accumulation point

Memory Analyzer performs the above and suggests “Problem 
Suspect”
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One Big Object, Problem Suspect
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Chain of Incoming References,
Accumulation Point
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Lab:Lab:

Exercise 2,3: Find Memory LeaksExercise 2,3: Find Memory Leaks
5117_memory_mat.zip5117_memory_mat.zip
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ClassLoader ClassLoader 
Memory LeakMemory Leak



31

ClassLoader and Classes it Loaded

• Every object has a reference to its class object

• Every class object has a reference to its classloader

• Every classloader in turn has a reference to each of the classes 
it has loaded, each of which might hold some static fields 
defined in the class: (This is the killer!!)
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Why ClassLoader Leak is so Common?

• To leak a classloader, it’s enough to leave a reference to any 
object, created from a class, loaded by that classloader
> Even if that object seems completely harmless (e.g. doesn’t have 

a single field), it will still hold on to its classloader
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Why ClassLoader Leak is so Bad?

• If a classloader is leaked, then it will hold on to all its classes 
and all their static fields
> Even if your application doesn’t have any large static caches, it 

doesn’t mean that the framework you use doesn’t hold them for 
you (e.g. Log4J is a common culprit)

• Major cause of OutOfMemoryException
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ClassLoader Leak Example

• Each Leak object and it class object are leaking. They are holding on 
to their classloaders

• The classloaders are holding onto the Example class object (including 
the static fields) they have loaded 
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Lab:Lab:

Exercise 4: Classloader Memory leakExercise 4: Classloader Memory leak
5117_memory_mat.zip5117_memory_mat.zip
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