
1

Eclipse MemoryEclipse Memory
Analyzer Tool (MAT)Analyzer Tool (MAT)

Sang ShinSang Shin
JPassion.comJPassion.com

““Learn with Passion!”Learn with Passion!”

1

2

Topics

• Basic concepts
> Heap dump
> Shallow vs. Retained heap
> Dominator tree
> GC (Garbage Collection) Roots
> Incoming & outgoing references
> Accumulation point

• How to detect memory leak

• Class loader memory leak example

3

HeapdumpHeapdump

4

What is a Heap Dump?

• A heap dump is a snapshot of the memory of a Java process at
a certain moment of time

• Heap dump format
> HPROF binary format (most common)
> IBM system dumps (after pre-processing them)
> IBM portable heap dumps (PHD)

● Usually a full GC is triggered before the heap dump is written so
it contains information about the remaining objects

5

What Does a HeapDump Contain?

• All Objects
> Class, field, primitive values and references

• All Classes
> Classloader, name, super class, static fields

• Thread stacks and local variables
> The call-stacks of threads at the moment of the snapshot, and per-

frame information about local objects

• Garbage Collection(GC) roots

6

A Heap Dump Does NOT Tell You..

• Where an object was allocated

• When an object was created

• How many objects were garbage collected

• It is indeed just a snapshot

7

A Heap Dump Can Help You

• Analyze the reason for an OutOfMemoryError

• Analyze the memory footprint of an application

• Debug non-memory related problems too
> Why an application is non-responsive? (Through threads analysis)

8

How to Get a Heap Dump

• You can trigger a heap dump (on-demand heap dumping)
> Within a tool (jconsole, Eclipse Memory Analyzer, NetBeans,

Eclipse, JMC, etc)
> jmap -dump:format=b,file=<filename.hprof> <pid>

• Application started with following JVM option creates a Heap
dump when OutOfMemoryError occurs
> -XX:+HeapDumpOnOutOfMemoryError
> There is no negative performance impact on the VM

• Application started with following JVM option creates a Heap
dump when CTRL+BREAK is pressed
> -XX:+HeapDumpOnCtrlBreak

9

How to Get a “Good” Heap Dump

• When memory is exhausted, the leak will occupy the most of the
heap space

• Ensure big enough heap space, this will make the leak easier to
find
> The memory leak pattern looks move obvious

10

Lab:Lab:

Exercise 1: Acquiring a HeapdumpExercise 1: Acquiring a Heapdump
5117_memory_mat.zip5117_memory_mat.zip

11

Shallow HeapShallow Heap
vs.vs.

Retained HeapRetained Heap

12

Shallow Heap vs. Retained Heap

• Shallow heap is the memory consumed by one object
> Its size in the heap
> An object needs 32 or 64 bits (depending on the OS architecture)

per reference, 4 bytes per Integer, 8 bytes per Long, etc.
> Depending on the heap dump format, the size may be adjusted

(e.g. aligned to 8, etc...) to model better the real consumption of
the VM

• Retained set of X is the set of objects which would be removed
by GC when X is GC'ed
> Retained heap of X is the sum of shallow sizes of all objects in the

retained set of X, i.e. memory kept alive by X
> Amount of heap memory that will be freed when X is garbage

collected

13

Shallow Heap vs. Retained Heap

Shallow heap Retained heap

14

Dominator TreeDominator Tree

15

What is and Why Dominator Tree?

• A dominator tree is built out of the object graph.

• The transformation of the “Object reference graph” into a
“Dominator tree” allows you to easily identify the biggest chunks
of “retained memory” and the keep-alive dependencies among
objects.

Object
reference

graph

Dominator
Tree

16

Objects in Dominator Tree

• Each object is the immediate
dominator of its children, so
dependencies between the
objects are easily identified.

• An object x dominates an
object y if every path in the
object graph from the start
(or the root) node to y must
go through x

• “C” is immediate dominator of
“D”, “E”, and “H”

• “C” is dominator of “D”, “E”,
“H”, “F”, “G”

17

Dominator Tree & Retained Set & Heap

• The objects belonging to the
sub-tree of x (i.e. the objects
dominated by x) represent
the retained set of x

• If “C” is GC'ed, the all the
retained heap space of it will
be also GC'ed

• The retained heap space of
“C” equals the collection of
all shallow heap spaces of its
chidren - “D”, “E”, “H”, “F”,
“G”

T

18

GC (Garbage GC (Garbage
Collection) RootsCollection) Roots

19

What is & Why Garbage Collection Roots?

• A Garbage Collection root (GC root) is an object that is
accessible from outside the heap
> They are root owner (root dominator) of other objects in the heap

• The Find Nearest GC Root feature can help you track down
memory leaks by showing the owner chain of the references
that prevents an object from being garbage collected.

• Example scenarios where an object is a GC root:
> Thread – A started, but not stopped, thread
> System class - Class loaded by bootstrap/system class loader. For

example, everything from the rt.jar like java.util.*
> ...

20

Path to GC Root

21

Other Misc. ConceptsOther Misc. Concepts

22

Incoming & Outgoing References

• Outgoing references
> Show what objects the current object is making references to

• Incoming references
> Shows what objects are making references to the current object
> Starts from GC Root

23

Incoming References

24

Accumulation Point

• Shows significant drop in the retained size – good candidate
where memory leak starts to occur

25

How to Analyze a How to Analyze a
Heapdump? (How to Heapdump? (How to
find Memory Leak?)find Memory Leak?)

26

Schemes of Analyzing Heap Dump

• Find the biggest objects
> Good starting point

• Analyze why they are kept in memory
> Someone has a reference to the objects
> Incoming references, GC Root

• Analyze what makes them big
> Check retained heap
> Accumulation point

Memory Analyzer performs the above and suggests “Problem
Suspect”

27

One Big Object, Problem Suspect

28

Chain of Incoming References,
Accumulation Point

29

Lab:Lab:

Exercise 2,3: Find Memory LeaksExercise 2,3: Find Memory Leaks
5117_memory_mat.zip5117_memory_mat.zip

30

ClassLoader ClassLoader
Memory LeakMemory Leak

31

ClassLoader and Classes it Loaded

• Every object has a reference to its class object

• Every class object has a reference to its classloader

• Every classloader in turn has a reference to each of the classes
it has loaded, each of which might hold some static fields
defined in the class: (This is the killer!!)

32

Why ClassLoader Leak is so Common?

• To leak a classloader, it’s enough to leave a reference to any
object, created from a class, loaded by that classloader
> Even if that object seems completely harmless (e.g. doesn’t have

a single field), it will still hold on to its classloader

33

Why ClassLoader Leak is so Bad?

• If a classloader is leaked, then it will hold on to all its classes
and all their static fields
> Even if your application doesn’t have any large static caches, it

doesn’t mean that the framework you use doesn’t hold them for
you (e.g. Log4J is a common culprit)

• Major cause of OutOfMemoryException

34

ClassLoader Leak Example

• Each Leak object and it class object are leaking. They are holding on
to their classloaders

• The classloaders are holding onto the Example class object (including
the static fields) they have loaded

35

Lab:Lab:

Exercise 4: Classloader Memory leakExercise 4: Classloader Memory leak
5117_memory_mat.zip5117_memory_mat.zip

36

Learn with Passion!Learn with Passion!
JPassion.comJPassion.com

36

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

