
1

Memory ProfilingMemory Profiling
Using NetBeansUsing NetBeans

ProfilerProfiler

Sang ShinSang Shin
JPassion.comJPassion.com

““Learn with Passion!”Learn with Passion!”

1

2

Topics

• Memory profiling features of NetBeans

• Live memory profiling
> Generations count

• Heap walker

• Dynamic attach

Memory Profiling Memory Profiling
Features of NetBeansFeatures of NetBeans

4

Memory Profiling Features of NetBeans

• Tracking down memory leaks on running
application
> You see allocations on the heap happen on running

application

• Provides memory usage pattern
> Detects memory leak even where each individual

leak is very small

• Provides heap walker
> Used to analyze a heap dump
> Help you quickly identify memory leak – let you

figure out why a particular object is not being
garbage collected by the JVM

> Eclipse Memory Analyzer is a more powerful heap
walker with more features, however

5

How Does NetBeans Profiler Work?

• Through byte code instrumentation
> Byte code instrumentation is a technique for adding

bytecode to a Java class during “run time”.

• Calibrating JDK needs to be done first
> Instrumenting the bytecode of a running application

imposes some overhead
> To guarantee the high accuracy of profiling results,

NetBeans Profiler needs to collect calibration data
on a JDK in order to "factor out" the time spent in
code instrumentation

> You need to run the calibration process for each JDK
you will use for profiling

> The calibration data for each JDK is saved in the
.nbprofile directory in your home directory

6

Lab:Lab:

Exercise 0: CalibrationExercise 0: Calibration
5116_memory_nbprofiler.zip5116_memory_nbprofiler.zip

Live Memory ProfilingLive Memory Profiling

8

Live Results (of Memory Profiling)

9

Key Columns (of Live Results)

• Allocated objects - the number of objects that the
profiler is monitoring

• Live objects - the number of the Allocated Objects
that are still on the JVM's heap and are therefore
taking up memory

• Average age - The age of each live object is the
number of garbage collections that it has survived.
The sum of the ages divided by the number of Live
Objects is the Average age.

• Generations - The Generations count is the number
of different ages for the Live Objects (we will talk
more on this on the following slides)

Generations CountGenerations Count

11

Generations Count & Memory Leak

• The Generations count is the number of different
ages for the Live Objects

• If the Generations count keeps increasing, it
indicates that new objects are being created while
the old ones are still in memory
> Indicates memory leak is occurring

• Types of objects in typical application
> Long-lived objects: created at the beginning and stay

alive for a long time
> Short-lived objects: created and destroyed in short

duration

12

• One Example of Healthy Behavior:

Long-lived objects.

Example: Three
object instances
created at startup.

Their ages continue
to increase, but
generation count
remains stable (at 1)

Generation Count: Long Lived Objects

13

• Another Example of Healthy Behavior:

Short-lived objects

Example: Create an
object, use it and then
immediately let go of
all references to it.

Generation count
remains stable (at 1)

Generation Count: Short-lived objects

14

Example: Continue to
allocate objects
without letting go of
all references.

Ten objects with eight
different ages.

Generation count is
always increasing (1
to 8).

• Unhealthy Behavior (Memory Leak):

Generation Count: Leaking Objects

15

Lab:Lab:

Exercise 1 & 2Exercise 1 & 2
5116_memory_nbprofiler.zip5116_memory_nbprofiler.zip

Heap WalkerHeap Walker

17

What does Heap Walker do?

• It reads the heap dump and provides a complete
picture of the objects on the heap and the
references between the objects
> Useful to analyze a heap dump produced when an
OutOfMemoryError occurs

• The “Find Nearest GC Root” feature can help you
track down the cause of memory leaks by showing
the owner of the reference that prevents an object
from being garbage collected
> Garbage Collection (GC) roots are the objects that

never get removed from the heap - they are the
starting point for the JVM's garbage collector.

> Any object that is reachable from a GC root cannot
be removed from the heap

18

Lab:Lab:

Exercise 3Exercise 3
5116_memory_nbprofiler.zip5116_memory_nbprofiler.zip

Dynamic AttachDynamic Attach

20

Attaching Profiler

• With JDK 6+, you can attach the profiler to an
application that is already running
> No special JVM command line flags are necessary

when you start that target application
> Useful for profiling production application
> It is called Dynamic attach

21

Lab:Lab:

Exercise 4Exercise 4
5116_memory_nbprofiler.zip5116_memory_nbprofiler.zip

22

Learn with Passion!Learn with Passion!
JPassion.comJPassion.com

22

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

