
1

JavaScript Advanced JavaScript Advanced

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”

1

2

Topics

1. JavaScript functions as first-class objects
2. Self-invoking function
3. Function scope
4. What is Closure? (Closure examples)
5. Why use Closure? (Closure usage examples)
6. Global object, non-global object, and “this”

JavaScript FunctionsJavaScript Functions
as First-class Objectsas First-class Objects

4

A function is a first-class JavaScript
Object (like String or Number object)
• Functions are a bit like Java methods (like in Java)

> They contain statements for performing some tasks
> They have arguments and return values

• A function is a first-class object in JavaScript (unlike in Java 7)
> Can be considered as a descendant of Object object
> Can do everything a regular JavaScript object can do such as having properties

and their values
> Function objects can have other function objects as methods

• A function behaves like a first-class object (unlike in Java 7)
1. It can be saved into a variable (like String object)
2. It can be passed as an argument to another function
3. It can be returned as a object

5

Function Object as First Class Object
• #1: Function object can be assigned to a variable

// Define a function – function object gets created
function myMethod(x) {
 console.log("myMethod is invoked with " + x);
}

// Save function object into a variable
var my_function_var = myMethod;

// Invoke the function
my_function_var("Function as a variable");

// Save anonymous function into a variable
var my_function_var2 = function (something){
 console.log("anonymous function is invoked with " + something);
};

// Invoke the function
my_function_var2("Function as a variable");

6

Function Object as First Class Object
• #2: Function object can be passed as an argument to another

function

// Define a function – function object gets created
function myFunction(x) {
 console.log("myMethod is invoked with " + x);
}

// Define another function, which takes an argument
function yourMethod(y) {
 y("Function as an argument");
}

// Pass your function object as an argument
yourMethod(myFunction);

7

Function Object as First Class Object
• #3: Function object can be returned as a return value

// Define a function – function object gets created
function myFunction(x) {
 console.log("myFunction is invoked with " + x);
}

// Return function object as a return value
function hisFunction() {
 return myFunction;
}

// Call function, which returns myFunction function
var y = hisFunction();

// Invoke the function
y("Function as a return value");

8

Lab:Lab:
Exercise 1: Functions as First-classExercise 1: Functions as First-class

ObjectsObjects
4266_javascript_advanced.zip4266_javascript_advanced.zip

Self-invoking FunctionSelf-invoking Function

10

What is a Self-invoking Function?

• Typically you define a function and then invoke the function

// Declare a function first
function myFunction(something) {
 console.log("Hello " + something);
}

// Then invoke the defined function
myFunction("JPassion"); // Hello JPassion

• Self-invoking function lets you define and invoke a function at the same time
> Self-invoking function is typically anonymous (because you don't need to

reference it by name)
> Sometimes called immediately-invoked function

// Self-invoking anonymous function - define and invoke function at the same time
(function (something) {
 console.log("Hello " + something);
})("JPassion"); // Hello JPassion

11

Self-Invoking Function Usage example #1

• To avoid global variables conflict
• Problem code:
> $ is used both in jquery.js and prototype.js

• Code that solves global conflict of $ between jquery.js &
prototype.js

 <script type="text/javascript" src="jquery-1.7.2.js"></script>
 <script type="text/javascript" src="prototype.js"></script>
 <script type="text/javascript">>

 // Create a plugin - there is no $ namespace conflict with
 // prototype.js since $ is used in private scope here.
 (function($) {
 $.fn.sayGreeting = function() {
 this.prepend("Hello, ");
 };
 })(jQuery);

12

Self-Invoking Function Usage example #2

• To substitute “setInterval(..)”
• Problem code:
> If you are in a situation where you want to run a piece of code repeatedly,

your first thinking might be using setInterval(..) - The problem is that
doSomething() function gets called repeatedly irrespective of whether
doSomething() function actually finished doing what it is supposed to do

 setInterval(doSomething, 3000);

• Code that uses self-invoking function
> This code will also repeat itself again and again with one difference.

setTimeout will never get triggered unless the task is finished.

 (function doSomething(){
 // Do some task

 // Wait until the above task is done then schedule the task again in 3 seconds
 setTimeout(doSomething, 3000);
 })()

13

Lab:Lab:
Exercise 2: Self-invoking FunctionExercise 2: Self-invoking Function

4266_javascript_advanced.zip4266_javascript_advanced.zip

Function Scope Function Scope

15

Function Scope

• Variables defined inside a function cannot be accessed from
anywhere outside the function, because they are defined only in
the scope of the function
> They are called “local scope” variables

• However, a function can access all variables and functions
defined in the same scope the function is defined
> A function (inner function) defined inside another function (outer function)

can also access all variables defined in it's outer function and any other
variable to which the outer function has access

> A function defined in the global scope can access all variables and
functions defined in the global scope

16

Lab:Lab:
Exercise 3: Function ScopeExercise 3: Function Scope

4266_javascript_advanced.zip4266_javascript_advanced.zip

What is Closure?What is Closure?
(Closure Examples)(Closure Examples)

18

What is a Closure?

• A formal description
> A "closure" is an expression (typically a function) that can have “free

variables” together with an environment that binds those variables (that
"closes" the expression) - In computer programming, the term “free
variable” refers to variables used in a function that are not local variables
nor parameters of that function

• An informal description
> A “closure” gets created when an inner function X is declared/defined

(note that is “declared/defined” not “invoked/executed”) in which, when
the function gets executed, it is allowed to access variables and other
declared inner functions, within its outer (parent) function, in other words,
in the same scope the function X is declared

19

Closure Example
• When the inner function bar() is declared, which occurs when outer function

foo() gets executed, a closure is formed, in which when the inner function
bar() gets executed, it can access variable x that is declared in the same
scope of bar()

function foo() {
 var x = 10;
 function bar() {
 console.log(x);
 };
 return bar;
}

// "foo" returns inner function
// "bar" and this returned function can
// access variable "x", which is set to 10

var returnedFunction = foo(); // outer function foo() gets executed

// let's define a global variable "x"
var x = 20;

// execution of the returned function
returnedFunction(); // 10, but not 20

20

Lab:Lab:
Exercise 4: What is Closure?Exercise 4: What is Closure?

4266_javascript_advanced.zip4266_javascript_advanced.zip

Why Use Closure?Why Use Closure?
(Closure Usage Examples)(Closure Usage Examples)

22

Why Use Closure?

• Can reduce the amount and complexity of code
• Can create code that is simply not possible (or too complex) to

create without using Closure
• Examples of Closure-enabled code
> Make variables private
> Indexing in a loop
> Timers

23

Closure Usage Example #1:
Make Variables Private
• JavaScript doesn't have special syntax for private members, but you can make

variables private using a closure

function Person() {
 // private properties and methods
 var name = 'jPassion';
 var myPrivateGetAgeMethod = function (){
 return 20;
 }

 this.getPersonalInfo = function() {
 return name + " is " + myPrivateGetAgeMethod();
 };
}
var myPerson = new Person();

// 'name' is undefined, it's private
console.log(myPerson.name); // undefined

// 'myPrivateGetAgeMethod' is undefined, since it it's private
//console.log(myPerson.myPrivateGetAgeMethod());

// public method has access to private members
console.log(myPerson.getPersonalInfo()); // "jPassion is 20"

name and myPrivateGetAgeMethod
properties cannot be accessed directly

24

Lab:Lab:
Exercise 5.1: Why use Closure?Exercise 5.1: Why use Closure?
4266_javascript_advanced.zip4266_javascript_advanced.zip

25

Indexing a loop example #1

• This is a classic problem in JavaScript

function addLinksExample1() {
 for (var i = 0, link; i < 5; i++) {
 link = document.createElement("a");
 link.innerHTML = "LinkWithoutClosure " + i + "
";

 // Indexing a loop without closure
 //
 // Inner anonymous function is defined with
 // the value of variables of outer function
 // when the outer function is executed.
 link.onclick = function() {
 alert(i);
 };
 document.body.appendChild(link);
 }
}
addLinksExample1();

26

Example #2: Indexing a loop Example 2

• Use another closure inside a self-invoking function

function addLinksExample2() {
 for (var i = 0, link; i < 5; i++) {
 link = document.createElement("a");
 link.innerHTML = "LinkWithClosure " + i + "
";

 // Indexing a loop with a closure
 //
 // Outer function is self-invoking function.
 // In other words, outer function is defined and invoked.
 // The outer function gets invoked with correct index, which
 // will be the value that inner function takes when it gets executed.
 link.onclick = (function(value) { // Outer function
 return function() { // Inner function
 alert(value);
 }
 })(i);
 document.body.appendChild(link);
 }
}
addLinksExample2();

27

Lab:Lab:
Exercise 5.2, 5.3:Exercise 5.2, 5.3:

closure_usage_index_loop_*.htmlclosure_usage_index_loop_*.html
4266_javascript_advanced.zip4266_javascript_advanced.zip

Global Object &Global Object &
Non-global Object &Non-global Object &
“this”“this”

29

Global Object

• All global variables and functions become properties of
the global object
> The global object is the owning object of the global variables and

global functions
> They are in “global” scope

• In browsers, the “window” object is the global object

30

What does “this” refer to?

• In JavaScript, “this” refers to the object that a function is
a method of

• In global scope, it refers to global object

<script type="text/javascript">
 // Global variable, it is a property of global object
 var myGlobalVariable = "John";

 // Global function, it is a property of global object
 function myGlobalFunction() {

 }

 // Display global object, “window” object in browser
 console.dir(this);
</script>

31

What does “this” refer to?

• In non-global scope, it refers to non-global object

// to personObj variable.
var personObj = {
 firstname : "John",
 lastname : "Doe",
 age : 50,
 tellYourage : function() {
 console.log("The age is " + this.age);
 console.dir(this); // "this" points to personObj instance
 },
}

personObj.tellYourage();

32

Lab:Lab:
Exercise 6: Global ObjectExercise 6: Global Object

4262_javascript_basics.zip4262_javascript_basics.zip

33

 Code with Passion!Code with Passion!
JPassion.comJPassion.com

33

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

