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Topics

1. JavaScript functions as first-class objects
2. Self-invoking function
3. Function scope
4. What is Closure? (Closure examples)
5. Why use Closure? (Closure usage examples)
6. Global object, non-global object, and “this”
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A function is a first-class JavaScript 
Object (like String or Number object)
• Functions are a bit like Java methods (like in Java)

> They contain statements for performing some tasks
> They have arguments and return values

• A function is a first-class object in JavaScript (unlike in Java 7) 
> Can be considered as a descendant of Object object
> Can do everything a regular JavaScript object can do such as having properties 

and their values
> Function objects can have other function objects as methods

• A function behaves like a first-class object (unlike in Java 7)
1. It can be saved into a variable (like String object)
2. It can be passed as an argument to another function
3. It can be returned as a object
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Function Object as First Class Object
• #1: Function object can be assigned to a variable
  
// Define a function – function object gets created
function myMethod(x) {
     console.log("myMethod is invoked with " + x);
}

// Save function object into a variable
var my_function_var = myMethod;

// Invoke the function
my_function_var("Function as a variable");

// Save anonymous function into a variable
var my_function_var2 = function (something){
     console.log("anonymous function is invoked with " + something);
};

// Invoke the function
my_function_var2("Function as a variable");



6

Function Object as First Class Object
• #2: Function object can be passed as an argument to another 

function
  
// Define a function – function object gets created
function myFunction(x) {
     console.log("myMethod is invoked with " + x);
}

// Define another function, which takes an argument
function yourMethod(y) {
     y("Function as an argument");
}

// Pass your function object as an argument 
yourMethod(myFunction);
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Function Object as First Class Object
• #3: Function object can be returned as a return value
  
// Define a function – function object gets created
function myFunction(x) {
     console.log("myFunction is invoked with " + x);
}

// Return function object as a return value
function hisFunction() {
     return myFunction;
}

// Call function, which returns myFunction function
var y = hisFunction();

// Invoke the function
y("Function as a return value");
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Lab:Lab:
Exercise 1: Functions as First-classExercise 1: Functions as First-class

ObjectsObjects
4266_javascript_advanced.zip4266_javascript_advanced.zip
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What is a Self-invoking Function?

• Typically you define a function and then invoke the function

// Declare a function first
function myFunction(something) {
    console.log("Hello " + something);
}

// Then invoke the defined function
myFunction("JPassion"); // Hello JPassion
  

• Self-invoking function lets you define and invoke a function at the same time
> Self-invoking function is typically anonymous (because you don't need to 

reference it by name)
> Sometimes called immediately-invoked function

// Self-invoking anonymous function - define and invoke function at the same time
(function (something) {
    console.log("Hello " + something);
})("JPassion"); // Hello JPassion 
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Self-Invoking Function Usage example #1

• To avoid global variables conflict
• Problem code:
> $ is used both in jquery.js and prototype.js

• Code that solves global conflict of $ between jquery.js & 
prototype.js 

    <script type="text/javascript" src="jquery-1.7.2.js"></script>
    <script type="text/javascript" src="prototype.js"></script>
    <script type="text/javascript">>
        
        // Create a plugin - there is no $ namespace conflict with
        // prototype.js since $ is used in private scope here.
        (function($) {
            $.fn.sayGreeting = function() {
                this.prepend("Hello, ");
            };
        })(jQuery);
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Self-Invoking Function Usage example #2 

• To substitute “setInterval(..)”
• Problem code:
> If you are in a situation where you want to run a piece of code repeatedly, 

your first thinking might be using setInterval(..) - The problem is that 
doSomething() function gets called repeatedly irrespective of whether 
doSomething() function actually finished doing what it is supposed to do

      
            setInterval(doSomething, 3000);

• Code that uses self-invoking function
> This code will also repeat itself again and again with one difference. 

setTimeout will never get triggered unless the task is finished. 
  
    (function doSomething(){
       // Do some task

       // Wait until the above task is done then schedule the task again in 3 seconds
       setTimeout(doSomething, 3000);
    })()
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Lab:Lab:
Exercise 2: Self-invoking FunctionExercise 2: Self-invoking Function

4266_javascript_advanced.zip4266_javascript_advanced.zip
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Function Scope

• Variables defined inside a function cannot be accessed from 
anywhere outside the function, because they are defined only in 
the scope of the function
> They are called “local scope” variables

• However, a function can access all variables and functions 
defined in the same scope the function is defined
> A function (inner function) defined inside another function (outer function) 

can also access all variables defined in it's outer function and any other 
variable to which the outer function has access

> A function defined in the global scope can access all variables and 
functions defined in the global scope
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Lab:Lab:
Exercise 3: Function ScopeExercise 3: Function Scope

4266_javascript_advanced.zip4266_javascript_advanced.zip
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(Closure Examples)(Closure Examples)
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What is a Closure?

• A formal description
> A "closure" is an expression (typically a function) that can have “free 

variables” together with an environment that binds those variables (that 
"closes" the expression) - In computer programming, the term “free 
variable” refers to variables used in a function that are not local variables 
nor parameters of that function

• An informal description
> A “closure” gets created when an inner function X is declared/defined 

(note that is “declared/defined” not “invoked/executed”) in which, when 
the function gets executed, it is allowed to access variables and other 
declared inner functions, within its outer (parent) function, in other words, 
in the same scope the function X is declared
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Closure Example
• When the inner function bar() is declared, which occurs when outer function 

foo() gets executed, a closure is formed,  in which when the inner function 
bar() gets executed, it can access variable x that is declared in the same 
scope of bar()
  
function foo() {
    var x = 10;
    function bar() {
           console.log(x);
    };
    return bar;
}

// "foo" returns inner function
// "bar" and this returned function can
// access variable "x", which is set to 10

var returnedFunction = foo(); // outer function foo() gets executed

// let's define a global variable "x"
var x = 20;

// execution of the returned function
returnedFunction(); // 10, but not 20
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Lab:Lab:
Exercise 4: What is Closure?Exercise 4: What is Closure?

4266_javascript_advanced.zip4266_javascript_advanced.zip
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(Closure Usage Examples)(Closure Usage Examples)
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Why Use Closure?

• Can reduce the amount and complexity of code
• Can create code that is simply not possible (or too complex) to 

create without using Closure
• Examples of Closure-enabled code
> Make variables private
> Indexing in a loop
> Timers
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Closure Usage Example #1: 
Make Variables Private
• JavaScript doesn't have special syntax for private members, but you can make 

variables private using a closure
  
function Person() {
    // private properties and methods
    var name = 'jPassion';
    var myPrivateGetAgeMethod = function (){
    return 20;
    }

    this.getPersonalInfo = function() {
        return name + " is " + myPrivateGetAgeMethod();
    };
}
var myPerson = new Person();

// 'name' is undefined, it's private
console.log(myPerson.name); // undefined

// 'myPrivateGetAgeMethod' is undefined, since it it's private
//console.log(myPerson.myPrivateGetAgeMethod());

// public method has access to private members
console.log(myPerson.getPersonalInfo()); // "jPassion is 20"

name and myPrivateGetAgeMethod
properties cannot be accessed directly
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Lab:Lab:
Exercise 5.1: Why use Closure?Exercise 5.1: Why use Closure?
4266_javascript_advanced.zip4266_javascript_advanced.zip
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Indexing a loop example #1

• This is a classic problem in JavaScript
  
function addLinksExample1() {
    for ( var i = 0, link; i < 5; i++) {
        link = document.createElement("a");
        link.innerHTML = "LinkWithoutClosure " + i + "<br/>";

        // Indexing a loop without closure
        //
        // Inner anonymous function is defined with
        // the value of variables of outer function
        // when the outer function is executed.
        link.onclick = function() {
             alert(i);
        };
       document.body.appendChild(link);
    }
}
addLinksExample1();
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Example #2: Indexing a loop Example 2

• Use another closure inside a self-invoking function
  
function addLinksExample2() {
    for ( var i = 0, link; i < 5; i++) {
        link = document.createElement("a");
        link.innerHTML = "LinkWithClosure " + i + "<br/>";

        // Indexing a loop with a closure
        //
        // Outer function is self-invoking function.
        // In other words, outer function is defined and invoked.
        // The outer function gets invoked with correct index, which
        // will be the value that inner function takes when it gets executed. 
        link.onclick = (function(value) {           // Outer function
            return function() {                            // Inner function
                alert(value);
            }
        })(i);
        document.body.appendChild(link);
    }
}
addLinksExample2();
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Lab:Lab:
Exercise 5.2, 5.3:Exercise 5.2, 5.3:

closure_usage_index_loop_*.htmlclosure_usage_index_loop_*.html
4266_javascript_advanced.zip4266_javascript_advanced.zip
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Global Object

• All global variables and functions become properties of 
the global object
> The global object is the owning object of the global variables and 

global functions
> They are in “global” scope

• In browsers, the “window” object is the global object
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What does “this” refer to?

• In JavaScript, “this” refers to the object that a function is 
a method of 

• In global scope, it refers to global object

<script type="text/javascript">
    // Global variable, it is a property of global object
    var myGlobalVariable = "John"; 

    // Global function, it is a property of global object
    function myGlobalFunction() {

    }

    // Display global object, “window” object in browser
    console.dir(this); 
</script>
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What does “this” refer to?

• In non-global scope, it refers to non-global object

// to personObj variable.
var personObj = {
            firstname : "John",
            lastname : "Doe",
            age : 50,
            tellYourage : function() {
                console.log("The age is " + this.age);
                console.dir(this);  // "this" points to personObj instance
   },
}

personObj.tellYourage();
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Lab:Lab:
Exercise 6: Global ObjectExercise 6: Global Object

4262_javascript_basics.zip4262_javascript_basics.zip
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    Code with Passion!Code with Passion!
JPassion.comJPassion.com
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