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Topics

• Dissecting “Helloworld” sample application

• Java comments

• Statements and blocks
• Java identifiers

• Java literals

• Variables
• Primitive types
• Operators
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Dissecting “Helloworld”Dissecting “Helloworld”
Sample AppSample App
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Dissecting “Helloworld” Sample App

1 public class Hello {
2 /**
3  * My first Java program
4  */
5 public static void main( String[] args ){

6

7 //prints the string Hello world on screen
8 System.out.println(“Hello world”);

9

10 }
11 }



5

• Indicates the name of the class is Hello

• The class uses an access modifier public, which 
indicates that our class is accessible to other classes 

1 public class Hello {
2 /**
3  * My first Java program
4  */

Class Declaration
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1 public class Hello {
2 /**
3  * My first Java program
4  */

Start of code block

• The curly brace { indicates the start of a code block

• In this code, we placed the curly brace at the end of the 
first line, however, we can also place { in the next line. 
So, we could actually write our code as: 

      
      public class Hello 
       {
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• The next three lines indicates a Java comment. 

• A comment
> Something used to document a part of a code.
> It is not part of the program itself - does not affect the 

programming logic - and used only for documentation 
purposes. 

> It is good programming practice to add comments to your code. 

1 public class Hello {
2 /**
3  * My first Java program
4  */

Comment
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• The main(..) method is a special method, which indicates 
the starting point of a Java program. 

• The main(..) method always takes command line 
arguments in the form of String array

1 public class Hello {
2 /**
3  * My first Java program
4  */
5 public static void main( String[ ] args ) {

main(..) method
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• It is a single line Java comment

1 public class Hello {
2 /**
3  * My first Java program
4  */
5 public static void main( String[] args ){
6
7     //prints the string “Hello world” on screen

Another Comment
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• The System.out.println(“something to print”); prints the 
text enclosed by double-quotation on the standard output 
device - typically a display screen. 

1 public class Hello {
2 /**
3  * My first Java program
4  */
5 public static void main( String[] args ){
6
7 //prints the string “Hello world” on screen
8 System.out.println(“Hello world”);

System.out.println(..)
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• The last two lines which contain the two curly braces are 
used to close the main method and class respectively. 

1 public class Hello {
2 /**
3  * My first Java program
4  */
5 public static void main( String[] args ){
6
7 //prints the string “Hello world” on screen
8 System.out.println(“Hello world”);
9
10 }
11 }

Ending Method and Class blocks



12

Coding Requirements: File name & 
Class name must match

1. A file that contains Java code must end with the .java 
extension. 

2. A file that contains Java class code must match the 
name of your public class  For example, if the name of 
your public class is Hello, you should save it in a file 
called Hello.java  - otherwise, a compile error will occur 
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Java CommentsJava Comments
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Java Comments

• Comments 
> These are notes written to a code for documentation purpose
> Those texts are not part of the program and does not affect the 

flow or logic of the program in any way

• 2 Types of comments in Java

// Comments  - used for single line comment
/* Comments 
    This is used for multi-line
    comment */
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Statements and BlocksStatements and Blocks
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Java Statements

• Each Java statement is terminated by a semicolon. 

System.out.println(“Hello world”);
  int x = 2;  
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Java Code Blocks

• One or more Java statements are bounded by opening 
and closing curly braces { … } 

• Any amount of white space is allowed

public static void main( String[] args ){
System.out.println("Hello"); 
System.out.println("world”);

} 
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Java IdentifiersJava Identifiers
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Java Identifiers

• Tokens that represent names of variables, methods, 
classes, etc.
> Example identifiers are: Hello, main, System, out. 

• Java identifiers are case-sensitive. 
> This means that the identifier Hello is not the same as hello

• Identifiers must begin with either a letter, an underscore 
“_”, or a dollar sign “$”. (They cannot begin with 
numbers.) Letters may be lower or upper case. 
Subsequent characters may use numbers 0 to 9. 

• Identifiers cannot use Java keywords like class, public, 
void, etc
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Java Keywords

• Keywords are predefined identifiers reserved by Java for 
a specific purpose. 

• You cannot use these keywords as your own identifiers - 
names for your variables, classes, methods ... etc. 

• The next slide contains the list of the Java Keywords.
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Java Keywords
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Java LiteralsJava Literals
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Java Literals

• Literals are tokens that do not change - they are 
sometimes called constant

• The different types of literals in Java are: 
> Integer Literals
> Floating-Point Literals
> Boolean Literals
> Character Literals
> String Literals
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Java Literals: Integer

• Special Notations in using integer literals in our programs:
> Decimal

> No special notation
> example: 12

> Hexadecimal
> Precede by 0x or 0X
> example: 0xC

> Octal
> Precede by 0
> example: 014
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Java Literals: Floating Point

• Represents decimals with fractional parts
> Example: 3.1416

• Can be expressed in standard or scientific notation
> Example: 583.45 (standard), 5.8345e2 (scientific)
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Java Literals: Boolean

• Boolean literals have only two values,  true or false. 
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Java Literals: Character

• Character Literals represent Unicode characters
• Unicode character set

> A 16-bit character set that replaces the 8-bit ASCII character 
set

> Unicode allows the inclusion of symbols and special characters 
from other languages
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Java Literals: Character

• To use a character literal, enclose the character in single 
quote delimiter. 

• For example
> The letter a, is represented as  ‘a’.  
> Special characters such as a newline character, a backslash is 

used followed by the character code. For example, ‘\n’ for the 
newline character, ‘\r’ for the carriage return, ‘\b’ for backspace. 
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Java Literals: String

• String literals represent multiple characters and are 
enclosed by double quotes. 

• An example of a string literal is, “Hello World”.  
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VariablesVariables
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Variables

• A variable is used to store the state of objects

• A variable has a:
> Data type - The data type indicates the type of value that the 

variable can hold
> Name  - The variable name must follow rules for identifiers. 
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Declaring and Initializing Variables

• Declare a variable as follows:
<data type>  <name> [=initial value];

• The Java programming language is statically-typed, 
which means that the <date type> must first be declared 
before variables can be used

• The <data type> can be either Primitive type or 
Reference type (Object type)
> double grade = 0.0;   // Primitive type
> Double grade2;         // Reference type (Object type)
> Person x;                  // Reference type (Object type)
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Declaring and Initializing 
Variables: Sample Program

1 public class VariableSamples {     
2 public static void main( String[] args ){         
3 // declare a data type with variable name         
4 // result and boolean data type         
5 boolean result;          
6
7 // declare a data type with variable name         
8 // option and char data type         
9 char option;          
10 option = 'C'; //assign 'C' to option         
11
12 // declare a data type with variable name         
13 // grade, double data type and initialized          
14 // to 0.0         
15 double grade = 0.0;      
16 }
17 } 
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Outputting Variable Data: Sample 
Program 
1 public class OutputVariable {
2      public static void main( String[] args ){
3          int value = 10;
4          char x;
5          x = ‘A’;
6
7          System.out.println( value );
8          System.out.println( “The value of x=“ + x );
9      }
10 } 

The program will output the following text on screen:

10
The value of x=A  



35

System.out.println()  vs. 
System.out.print() 

• System.out.println()
> Appends a newline at the end of the data output

• System.out.print() 
> Does not append newline at the end of the data output
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Lab:Lab:

Exercise 1: VariablesExercise 1: Variables
1002_javase_progbasics.zip1002_javase_progbasics.zip



37

Primitive TypesPrimitive Types
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Primitive Data Types

• The Java programming language defines eight primitive 
data types. 
> boolean (for logical)
> char (for textual)
> byte
> short
> int 
> long (integral)
> double
> float (floating point). 
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Primitive Data Types

• Used to hold non-Object values (non-Reference type 
values) 

• In Java, they are provided for higher performance for 
compute-intensive applications
> Other programming languages might not have primitive types
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Primitive Data Types: Logical-
boolean

• A boolean data type represents two states: true and 
false.

• An example is, 
boolean result = true;  

• The example shown above, declares a variable named 
result as boolean type and assigns it a value of true.  
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Primitive Data Types: Textual-char

• A character data type (char), represents a single Unicode 
character. 

• It must have its literal enclosed in single quotes(’ ’)
‘a’  //The letter a  
‘\t’ //A tab  

• To represent special characters like ' (single quotes) or " 
(double quotes), use the escape character \

'\'' //for single quotes 
'\"' //for double quotes 
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Primitive Data Types: Integral – byte, 
short, int & long 
• Integral data types in Java uses three forms – decimal, 

octal or hexadecimal. 
• Examples are,  

2  //The decimal value 2  
077 //The leading 0 indicates an octal value 
0xBACC //The leading 0x indicates a hex value

• You can define its long value by appending the letter l or L
10L 
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Primitive Data Types: Integral – byte, 
short, int & long
•  Integral data type have the following ranges:  
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Primitive Data Types: Floating Point 
– float and double 

• Floating-point literal includes either a decimal point or one 
of the following,  

E or e //(add exponential value) 
F or f //(float)  
D or d //(double)  

• Examples are, 
3.14  //A simple floating-point value (a double)
6.02E23    //A large floating-point value  
2.718F    //A simple float size value  
123.4E+306D//A large double value with redundant D 
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Primitive Data Types: Floating Point 
– float and double 

• Floating-point data types have the following ranges: 

Type Size Range

float 4 bytes (32 bits) +/- 3.4 * 10 (power of 38)

double 8 bytes(64 bits) +/- 1.8 * 10 (power of 308)
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Lab:Lab:

Exercise 2: Compute Average & SumExercise 2: Compute Average & Sum
1002_javase_progbasics.zip1002_javase_progbasics.zip
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OperatorsOperators
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Operators

• Different types of operators:
> Arithmetic operators
> Relational operators
> Logical operators
> Conditional operators

• These operators follow a certain kind of precedence so 
that the compiler will know which operator to evaluate 
first in case multiple operators are used in a single 
statement
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Arithmetic Operators
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Increment and Decrement Operators 

• Unary increment operator (++) 
• Unary decrement operator (--)

• Increment and decrement operators increase and 
decrease a value stored in a number variable by 1. 

• For example, the expression, 

count=count + 1;  //increment the value of count by 1

  

     is equivalent to, 

count++;     // same as above 
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Increment and Decrement Operators 

• The increment and decrement operators can be placed 
before or after an operand
> ++a or a++  

• When used before an operand, it causes the variable to 
be incremented or decremented by 1 first, and then the 
new value is used in the expression in which it appears. 
 int i = 10;
 int j = 3;
 int k = 0;
 k = ++j + i; // j =4, k = 4+10 = 14
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Increment and Decrement Operators 

• When the increment and decrement operators are placed 
after the operand, the old value of the variable will be 
used in the expression where it appears. 

int i = 10;
int j = 3; 
int k = 0; 
k = j++ + i; // k = 3+10 = 13, j = 4 
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Relational Operators
• Relational operators compare two values and determines 

the relationship between those values. 

• Output of evaluation is boolean value: true or false.  
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Logical Operators

• Logical operators have one or two boolean operands that 
yield a boolean result. 

• There are six logical operators:
> && (logical AND)
> & (boolean logical AND)
> || (logical OR)
> | (boolean logical inclusive OR)
> ^ (boolean logical exclusive OR)
> ! (logical NOT)
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• Here is the truth table for && and &,

Logical Operators: &&
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Logical Operators: || 

• Here is the truth table for || 
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Logical Operators:  ^ (boolean logical 
exclusive OR) 
• Here is the truth table for ^, 

• The result of an exclusive OR operation is TRUE, if and 
only if one operand is true and the other is false. 

• Note that both operands must always be evaluated in 
order to calculate the result of an exclusive OR. 
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Logical Operators:  ! ( logical  NOT)

• The logical NOT takes in one argument, wherein that 
argument can be an expression, variable or constant.

• Here is the truth table for !,
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Logical Operators: Conditional 
Operator (?:)

• The conditional operator ?: 
> is a ternary operator. 

> This means that it takes in three arguments that together form a 
conditional expression. 

> The structure of an expression using a conditional operator is
exp1?exp2:exp3 

wherein,

exp1 - is a boolean expression whose result must either be true or false

> Result:
If exp1 is true, exp2 is the value returned. 

If it is false, then exp3 is returned.
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Logical Operators: Conditional 
Operator (?:)

1 public class ConditionalOperator {
2  public static void main( String[] args ){
3  String  status = "";
4  int grade = 80;
5  //get status of the student
6  status = (grade >= 60)?"Passed":"Fail";
7  //print status
8  System.out.println( status );
9  }
10 } 
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Logical Operators: Conditional 
Operator (?:)
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Operator Precedence

• Given a complicated expression,  

6%2*5+4/2+88-10 

we can re-write the expression and place some 
parenthesis base on operator precedence, 

((6%2)*5)+(4/2)+88-10; 
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Lab:Lab:

Exercise 3: Conditional OperatorExercise 3: Conditional Operator
Exercise 4: Find Greatest NumberExercise 4: Find Greatest Number

1002_javase_progbasics.zip1002_javase_progbasics.zip
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Code with Passion!Code with Passion!
JPassion.comJPassion.com
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