
1

Java ProgrammingJava Programming
BasicsBasics

1

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”

2

Topics

• Dissecting “Helloworld” sample application

• Java comments

• Statements and blocks
• Java identifiers

• Java literals

• Variables
• Primitive types
• Operators

3

Dissecting “Helloworld”Dissecting “Helloworld”
Sample AppSample App

4

Dissecting “Helloworld” Sample App

1 public class Hello {
2 /**
3 * My first Java program
4 */
5 public static void main(String[] args){

6

7 //prints the string Hello world on screen
8 System.out.println(“Hello world”);

9

10 }
11 }

5

• Indicates the name of the class is Hello

• The class uses an access modifier public, which
indicates that our class is accessible to other classes

1 public class Hello {
2 /**
3 * My first Java program
4 */

Class Declaration

6

1 public class Hello {
2 /**
3 * My first Java program
4 */

Start of code block

• The curly brace { indicates the start of a code block

• In this code, we placed the curly brace at the end of the
first line, however, we can also place { in the next line.
So, we could actually write our code as:

 public class Hello
 {

7

• The next three lines indicates a Java comment.

• A comment
> Something used to document a part of a code.
> It is not part of the program itself - does not affect the

programming logic - and used only for documentation
purposes.

> It is good programming practice to add comments to your code.

1 public class Hello {
2 /**
3 * My first Java program
4 */

Comment

8

• The main(..) method is a special method, which indicates
the starting point of a Java program.

• The main(..) method always takes command line
arguments in the form of String array

1 public class Hello {
2 /**
3 * My first Java program
4 */
5 public static void main(String[] args) {

main(..) method

9

• It is a single line Java comment

1 public class Hello {
2 /**
3 * My first Java program
4 */
5 public static void main(String[] args){
6
7 //prints the string “Hello world” on screen

Another Comment

10

• The System.out.println(“something to print”); prints the
text enclosed by double-quotation on the standard output
device - typically a display screen.

1 public class Hello {
2 /**
3 * My first Java program
4 */
5 public static void main(String[] args){
6
7 //prints the string “Hello world” on screen
8 System.out.println(“Hello world”);

System.out.println(..)

11

• The last two lines which contain the two curly braces are
used to close the main method and class respectively.

1 public class Hello {
2 /**
3 * My first Java program
4 */
5 public static void main(String[] args){
6
7 //prints the string “Hello world” on screen
8 System.out.println(“Hello world”);
9
10 }
11 }

Ending Method and Class blocks

12

Coding Requirements: File name &
Class name must match

1. A file that contains Java code must end with the .java
extension.

2. A file that contains Java class code must match the
name of your public class For example, if the name of
your public class is Hello, you should save it in a file
called Hello.java - otherwise, a compile error will occur

13

Java CommentsJava Comments

14

Java Comments

• Comments
> These are notes written to a code for documentation purpose
> Those texts are not part of the program and does not affect the

flow or logic of the program in any way

• 2 Types of comments in Java

// Comments - used for single line comment
/* Comments
 This is used for multi-line
 comment */

15

Statements and BlocksStatements and Blocks

16

Java Statements

• Each Java statement is terminated by a semicolon.

System.out.println(“Hello world”);
 int x = 2;

17

Java Code Blocks

• One or more Java statements are bounded by opening
and closing curly braces { … }

• Any amount of white space is allowed

public static void main(String[] args){
System.out.println("Hello");
System.out.println("world”);

}

18

Java IdentifiersJava Identifiers

19

Java Identifiers

• Tokens that represent names of variables, methods,
classes, etc.
> Example identifiers are: Hello, main, System, out.

• Java identifiers are case-sensitive.
> This means that the identifier Hello is not the same as hello

• Identifiers must begin with either a letter, an underscore
“_”, or a dollar sign “$”. (They cannot begin with
numbers.) Letters may be lower or upper case.
Subsequent characters may use numbers 0 to 9.

• Identifiers cannot use Java keywords like class, public,
void, etc

20

Java Keywords

• Keywords are predefined identifiers reserved by Java for
a specific purpose.

• You cannot use these keywords as your own identifiers -
names for your variables, classes, methods ... etc.

• The next slide contains the list of the Java Keywords.

21

Java Keywords

22

Java LiteralsJava Literals

23

Java Literals

• Literals are tokens that do not change - they are
sometimes called constant

• The different types of literals in Java are:
> Integer Literals
> Floating-Point Literals
> Boolean Literals
> Character Literals
> String Literals

24

Java Literals: Integer

• Special Notations in using integer literals in our programs:
> Decimal

> No special notation
> example: 12

> Hexadecimal
> Precede by 0x or 0X
> example: 0xC

> Octal
> Precede by 0
> example: 014

25

Java Literals: Floating Point

• Represents decimals with fractional parts
> Example: 3.1416

• Can be expressed in standard or scientific notation
> Example: 583.45 (standard), 5.8345e2 (scientific)

26

Java Literals: Boolean

• Boolean literals have only two values, true or false.

27

Java Literals: Character

• Character Literals represent Unicode characters
• Unicode character set

> A 16-bit character set that replaces the 8-bit ASCII character
set

> Unicode allows the inclusion of symbols and special characters
from other languages

28

Java Literals: Character

• To use a character literal, enclose the character in single
quote delimiter.

• For example
> The letter a, is represented as ‘a’.
> Special characters such as a newline character, a backslash is

used followed by the character code. For example, ‘\n’ for the
newline character, ‘\r’ for the carriage return, ‘\b’ for backspace.

29

Java Literals: String

• String literals represent multiple characters and are
enclosed by double quotes.

• An example of a string literal is, “Hello World”.

30

VariablesVariables

31

Variables

• A variable is used to store the state of objects

• A variable has a:
> Data type - The data type indicates the type of value that the

variable can hold
> Name - The variable name must follow rules for identifiers.

32

Declaring and Initializing Variables

• Declare a variable as follows:
<data type> <name> [=initial value];

• The Java programming language is statically-typed,
which means that the <date type> must first be declared
before variables can be used

• The <data type> can be either Primitive type or
Reference type (Object type)
> double grade = 0.0; // Primitive type
> Double grade2; // Reference type (Object type)
> Person x; // Reference type (Object type)

33

Declaring and Initializing
Variables: Sample Program

1 public class VariableSamples {
2 public static void main(String[] args){
3 // declare a data type with variable name
4 // result and boolean data type
5 boolean result;
6
7 // declare a data type with variable name
8 // option and char data type
9 char option;
10 option = 'C'; //assign 'C' to option
11
12 // declare a data type with variable name
13 // grade, double data type and initialized
14 // to 0.0
15 double grade = 0.0;
16 }
17 }

34

Outputting Variable Data: Sample
Program
1 public class OutputVariable {
2 public static void main(String[] args){
3 int value = 10;
4 char x;
5 x = ‘A’;
6
7 System.out.println(value);
8 System.out.println(“The value of x=“ + x);
9 }
10 }

The program will output the following text on screen:

10
The value of x=A

35

System.out.println() vs.
System.out.print()

• System.out.println()
> Appends a newline at the end of the data output

• System.out.print()
> Does not append newline at the end of the data output

36

Lab:Lab:

Exercise 1: VariablesExercise 1: Variables
1002_javase_progbasics.zip1002_javase_progbasics.zip

37

Primitive TypesPrimitive Types

38

Primitive Data Types

• The Java programming language defines eight primitive
data types.
> boolean (for logical)
> char (for textual)
> byte
> short
> int
> long (integral)
> double
> float (floating point).

39

Primitive Data Types

• Used to hold non-Object values (non-Reference type
values)

• In Java, they are provided for higher performance for
compute-intensive applications
> Other programming languages might not have primitive types

40

Primitive Data Types: Logical-
boolean

• A boolean data type represents two states: true and
false.

• An example is,
boolean result = true;

• The example shown above, declares a variable named
result as boolean type and assigns it a value of true.

41

Primitive Data Types: Textual-char

• A character data type (char), represents a single Unicode
character.

• It must have its literal enclosed in single quotes(’ ’)
‘a’ //The letter a
‘\t’ //A tab

• To represent special characters like ' (single quotes) or "
(double quotes), use the escape character \

'\'' //for single quotes
'\"' //for double quotes

42

Primitive Data Types: Integral – byte,
short, int & long
• Integral data types in Java uses three forms – decimal,

octal or hexadecimal.
• Examples are,

2 //The decimal value 2
077 //The leading 0 indicates an octal value
0xBACC //The leading 0x indicates a hex value

• You can define its long value by appending the letter l or L
10L

43

Primitive Data Types: Integral – byte,
short, int & long
• Integral data type have the following ranges:

44

Primitive Data Types: Floating Point
– float and double

• Floating-point literal includes either a decimal point or one
of the following,

E or e //(add exponential value)
F or f //(float)
D or d //(double)

• Examples are,
3.14 //A simple floating-point value (a double)
6.02E23 //A large floating-point value
2.718F //A simple float size value
123.4E+306D//A large double value with redundant D

45

Primitive Data Types: Floating Point
– float and double

• Floating-point data types have the following ranges:

Type Size Range

float 4 bytes (32 bits) +/- 3.4 * 10 (power of 38)

double 8 bytes(64 bits) +/- 1.8 * 10 (power of 308)

46

Lab:Lab:

Exercise 2: Compute Average & SumExercise 2: Compute Average & Sum
1002_javase_progbasics.zip1002_javase_progbasics.zip

47

OperatorsOperators

48

Operators

• Different types of operators:
> Arithmetic operators
> Relational operators
> Logical operators
> Conditional operators

• These operators follow a certain kind of precedence so
that the compiler will know which operator to evaluate
first in case multiple operators are used in a single
statement

49

Arithmetic Operators

50

Increment and Decrement Operators

• Unary increment operator (++)
• Unary decrement operator (--)

• Increment and decrement operators increase and
decrease a value stored in a number variable by 1.

• For example, the expression,

count=count + 1; //increment the value of count by 1

 is equivalent to,

count++; // same as above

51

Increment and Decrement Operators

• The increment and decrement operators can be placed
before or after an operand
> ++a or a++

• When used before an operand, it causes the variable to
be incremented or decremented by 1 first, and then the
new value is used in the expression in which it appears.
 int i = 10;
 int j = 3;
 int k = 0;
 k = ++j + i; // j =4, k = 4+10 = 14

52

Increment and Decrement Operators

• When the increment and decrement operators are placed
after the operand, the old value of the variable will be
used in the expression where it appears.

int i = 10;
int j = 3;
int k = 0;
k = j++ + i; // k = 3+10 = 13, j = 4

53

Relational Operators
• Relational operators compare two values and determines

the relationship between those values.

• Output of evaluation is boolean value: true or false.

54

Logical Operators

• Logical operators have one or two boolean operands that
yield a boolean result.

• There are six logical operators:
> && (logical AND)
> & (boolean logical AND)
> || (logical OR)
> | (boolean logical inclusive OR)
> ^ (boolean logical exclusive OR)
> ! (logical NOT)

55

• Here is the truth table for && and &,

Logical Operators: &&

56

Logical Operators: ||

• Here is the truth table for ||

57

Logical Operators: ^ (boolean logical
exclusive OR)
• Here is the truth table for ^,

• The result of an exclusive OR operation is TRUE, if and
only if one operand is true and the other is false.

• Note that both operands must always be evaluated in
order to calculate the result of an exclusive OR.

58

Logical Operators: ! (logical NOT)

• The logical NOT takes in one argument, wherein that
argument can be an expression, variable or constant.

• Here is the truth table for !,

59

Logical Operators: Conditional
Operator (?:)

• The conditional operator ?:
> is a ternary operator.

> This means that it takes in three arguments that together form a
conditional expression.

> The structure of an expression using a conditional operator is
exp1?exp2:exp3

wherein,

exp1 - is a boolean expression whose result must either be true or false

> Result:
If exp1 is true, exp2 is the value returned.

If it is false, then exp3 is returned.

60

Logical Operators: Conditional
Operator (?:)

1 public class ConditionalOperator {
2 public static void main(String[] args){
3 String status = "";
4 int grade = 80;
5 //get status of the student
6 status = (grade >= 60)?"Passed":"Fail";
7 //print status
8 System.out.println(status);
9 }
10 }

61

Logical Operators: Conditional
Operator (?:)

62

Operator Precedence

• Given a complicated expression,

6%2*5+4/2+88-10

we can re-write the expression and place some
parenthesis base on operator precedence,

((6%2)*5)+(4/2)+88-10;

63

Lab:Lab:

Exercise 3: Conditional OperatorExercise 3: Conditional Operator
Exercise 4: Find Greatest NumberExercise 4: Find Greatest Number

1002_javase_progbasics.zip1002_javase_progbasics.zip

64

Code with Passion!Code with Passion!
JPassion.comJPassion.com

64

	Slide 1
	Slide 2
	Slide 3
	Start Lesson Here
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Codiing Guidelines
	Slide 13
	Java Comments
	Slide 15
	Statements and Blocks
	Slide 17
	Slide 18
	Identifiers
	Keywords
	Slide 21
	Slide 22
	Literals
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Variables
	Slide 32
	Slide 33
	Slide 34
	System.out
	Slide 36
	Slide 37
	Primitive Data Types
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Operators
	Arithmetic
	Slide 50
	Slide 51
	Slide 52
	Relational
	Logical
	&&_&
	||_|
	XOR
	NOT
	?:
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

