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Topics
• Brief introduction on Object-Oriented Programming (OOP)
• Classes and objects
• Creation of Object instances using “new” keyword
• Methods: Instance methods vs. Static methods
• Variables (fields, properties)
• Scope of a variable
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  Brief Introduction on Brief Introduction on 
OOPOOP
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What is Object-Oriented Programming 
(OOP)?
• Revolves around the concept of objects as the basic elements 

of your programs
– Object represent “things”
– Object can be tangible things such as “Car”, “Computer” or 

intangible things such as “Course”, “Longevity” 
• These objects are characterized by their properties (sometimes 

called attributes) and behaviors
• Key aspects of OOP

– Encapsulation
– Inheritance
– Polymorphism
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Example of Objects: Car and Lion
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  Classes and Objects Classes and Objects 
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What is a Class and an Object?

• Class 
– Represents a “type” from which an object can be created
– Can be thought of as a template, a prototype or a blueprint of  an 

object of same type
– Is the fundamental structure in object-oriented programming 

• What makes up a class?
– Fields (they are also called properties or attributes) - specify the data 

types defined by the class
– Methods - specify the behavior
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Relationship between Class and Objects

• Object (or Object instance)
– An object is an instance of a class 
– The property (field) values of an object instance is different from the 

ones of other object instances of a same class
– Object instances of a same class share the same behavior 

(methods), however
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Example: Classes and Objects
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Example: Defining “Car” class
public class Car {
    
    // Fields - different values for different objects
    private String plateNumber;
    private String color;
    private String manufacturer;
    private int    speed;
    
    // Methods - common for all objects created from this class
    public void accelerate(){
        // Some code
    }
    
    public void turn(){
        // Some code
    }
    
    public void brake(){
        // Some code
    }
}
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Classes and Reusability

• Classes provide the benefit of reusability
• Programmers create many object instances from the same 

class 
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What is Encapsulation?

• The scheme of hiding implementation details of a class
– The user of the class does not need to know the implementation 

details of a class
– The user can call brake() method of the Car class without 

knowing how the brake() method is actually implemented
• The implementation can change without affecting the user of 

the class 
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  Creation of Object Creation of Object 
Instances with “new” Instances with “new” 

keywordkeyword
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How do you create Object Instance?

• To create an object instance of a class, use the new keyword 
• For example, if you want to create an object instance of the 

class String, you would write the following code, 
String str2 = new String(“Hello world!”);  

or 
String str2 = "Hello world!"; 

• String class is a special (and only) class you can create an 
instance without using new keyword as shown above 
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Constructor Method of a Class

• When you create an object using new keyword,  the class' 
constructor method gets invoked automatically
– Constructor method of a class typically contains some 

initialization logic
• Syntax of constructor method

– The constructor method has the same name as the class
– The constructor method does not have a return type
– There could be multiple constructor methods (with different set 

of arguments – it is called constructor overloading)
– If there is no constructor method, a no-arg constructor 

(sometimes called default constructor) gets inserted into the 
class by the compiler
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Example: Constructor Method of Car Class

public class Car {
    
    // Fields - different values for different objects
    private String plateNumber;
    private String color;
    private String manufacturer;
    private int    speed;

    // Constructor method
    public Car() {
       // Some initialization can be done here
    }
    
    // Methods - common for all objects created from this class
    public void accelerate(){
        // Some code
    }
    
    public void turn(){
        // Some code
    }
    
    public void brake(){
        // Some code
    }
}
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Lab:Lab:

Exercise 1: Create an Object InstanceExercise 1: Create an Object Instance
using “new” keywordusing “new” keyword

1011_javase_class_part1.zip1011_javase_class_part1.zip
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  MethodsMethods
(Instance methods &(Instance methods &

Static methods)Static methods)
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What is a Method?

• A method is a block of code (set of statements) that can be 
called to perform some specific task 

• The following are characteristics of a method
– It can return one or no values
– It may accept as many arguments it needs or no argument at all 

(Arguments are also called parameters).
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Why Use Methods? 

• Methods contain behavior of a class (business logic)
– Taking a problem and breaking it into small, manageable tasks 

is critical to writing large programs. 
– We can do this in Java by a creating methods to perform  these 

manageable tasks
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There are Two Types of Methods 

• Instance (non-static) methods
– Can be called only through an object instance - so it can be 

called only after object instance is created
– Calling syntax

● [NameOfObject].[methodName]
– More common than static methods

• Static methods
– Object instance does not have to be created
– Can be called through a class

● [ClassName].[methodName]
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Calling Instance (non-static) Methods

• To illustrate how to call methods, let's use the String class 
as an example

• You can use the Java API documentation to see all methods of 
the String class 
– http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

• A method with “static” modifier is a static method while a 
method without “static” modifier is an instance (non-static) 
method

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
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Calling Instance (non-static) Methods

• To call an instance method, we write the following,
 nameOfObject.nameOfMethod( arguments );

// Create object instance of String class

String strInstance1 = new String("I am object

                   instance of a String class");

// Call charAt instance method of String class 

char x = strInstance1.charAt(2);
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Instance Methods

• Let's take two sample instance methods found in the String 
class
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Example: Calling Instance Methods

// Create object instance of String class
String str1 = new String(“HELLO”); 

// Call instance method charAt().
// This will return the character H 
// and store it to variable x.
char x = str1.charAt(0);  

// Create another object instance of String class
String str2 = new String(“hello”);

// Call instance method equalsIgnoreCase().
// This will return a boolean value true.
boolean  result = str1.equalsIgnoreCase( str2 );
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Static Methods

• Static method definition
– Static methods are defined with the keyword static

 
• Static method invocation

– Static methods are invoked without creating an object instance 
(means without invoking the new keyword)

– You call static method from a Class not object instance

Classname.staticMethodName(arguments); 
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Static Method Invocation Example

// The parseInt() is a static method of the Integer class
// It converts the String 10, to an integer 
int i = Integer.parseInt(“10”);  

// The toHexString() is a static method of the Integer class.
// It returns a String representation of the integer 
// argument as an unsigned integer base 16 
String hexEquivalent = Integer.toHexString( 10 ); 
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Lab:Lab:

Exercise 2: Static method & Instance MethodExercise 2: Static method & Instance Method
1011_javase_class.zip1011_javase_class.zip
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  Variables (Fields,Variables (Fields,
Properties, Properties, 
Attributes)Attributes)
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Three Types of Variables 

• There are three types of variables
– Static variable (Also called as Class variable)
– Non-static variable (Also called as Instance variable)
– Local variable (Also called as automatic variable)

• The type of variable is determined by where the variable is 
declared

• The type of variable dictates where and how it can be used – 
this is called the scope of variable  
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Example: Types of Variables
public class Car {

    // Class (Static) variable
    private static String manufacturer = "Ford";
    
    // Instance (non-Static) variable
    private String plateNumber;
    private String color;
    
    public Car() {
    }
    
    public void accelerate(){
        // Local (automatic) variable
        int x = 10;
    }
    
}
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Static Variable (Static Field)

• Declared inside a class body but outside of any method bodies 
(same as Instance variable)

• Prepended with the static modifier (different from Instance 
variable)

• Exists per each class
– Come to existence when the class is loaded 

• Shared by all object instances of the class
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Instance Variable (Instance Field)

• Declared inside a class body but outside of any method bodies 
(like static variable)

• Exists per each object instance
– Different object instances typically have different values for these 

instance variables
– Come to existence when an object instance is created
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Local Variable

• Declared within a method body
• Visible only within the method body

– Come to existence only when the method gets executed
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  Scope of VariablesScope of Variables
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Scope of a Variable

• The scope of a variable 
– Determines where in the program the variable is accessible. 
– Determines the lifetime of a variable or how long the variable 

can exist in memory
 

• The scope is determined by where the variable declaration is 
placed in the program
– Just think of the scope as anything between the curly braces 

{...}, which represents a code block
– More precisely, a variable's scope is inside the code block 

where it is declared, starting from the point where it is declared
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Example 1: Scope of Variables
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Example 1: Explanation

• The code we have in the previous slide represents five scopes 
indicated by the lines and the letters representing the scope. 

• Given the variables i,j,k,m and n, and the five scopes A,B,C,D 
and E, we have the following scopes for each variable: 
– The scope of variable i is A. 
– The scope of variable j is B. 
– The scope of variable k is C. 
– The scope of variable m is D. 
– The scope of variable n is E. 
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Example 2: Scope of Variables
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Example 2: Explanation

• In the main method, the scopes of the variables are, 
– ages[]  - scope A 
– i in B  - scope B
– i in C  – scope C 

• In the test method, the scopes of the variables are, 
– arr[] - scope D 
– i in E - scope E 
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Scope of a Variable

• When declaring variables, only one variable with a given 
identifier or name can be declared in a scope. 

• That means that if you have the following declaration, 

{ 
int test = 10; 
int test = 20; 

} 

This will cause a compile error since names have to be unique 
within a block
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Scope of a Variable

• However, you can have two variables of the same name, if they 
are declared in different blocks. For example, 

public class Main {
    static int test = 10;

    public static void main(String[] args) {

        System.out.println(test);   // prints 10

        // test variable is defined in a new block
        {
            int test = 20; 
            System.out.println(test);// prints 20
        }

        System.out.println(test);   // prints 10
    }
}
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Scope of Variables 

• Local (automatic) variable
– Only valid from the line they are declared on until the closing 

curly brace of the method or code block within which they are 
declared

– Most limited scope

• Instance variable
– Valid as long as the object instance is alive

• Class (static) variable
– In scope from the point the class is loaded into the JVM until the 

the class is unloaded 
– Class are loaded into the JVM the first time the class is 

referenced
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Lab:Lab:

Exercise 3: Scope of VariablesExercise 3: Scope of Variables
1011_javase_class.zip1011_javase_class.zip
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Code with Passion!Code with Passion!
JPassion.comJPassion.com
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