
1

Working With Built-inWorking With Built-in
Java Classes Part IJava Classes Part I

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”

1

2

Topics
• Brief introduction on Object-Oriented Programming (OOP)
• Classes and objects
• Creation of Object instances using “new” keyword
• Methods: Instance methods vs. Static methods
• Variables (fields, properties)
• Scope of a variable

3

 Brief Introduction on Brief Introduction on
OOPOOP

4

What is Object-Oriented Programming
(OOP)?
• Revolves around the concept of objects as the basic elements

of your programs
– Object represent “things”
– Object can be tangible things such as “Car”, “Computer” or

intangible things such as “Course”, “Longevity”
• These objects are characterized by their properties (sometimes

called attributes) and behaviors
• Key aspects of OOP

– Encapsulation
– Inheritance
– Polymorphism

5

Example of Objects: Car and Lion

6

 Classes and Objects Classes and Objects

7

What is a Class and an Object?

• Class
– Represents a “type” from which an object can be created
– Can be thought of as a template, a prototype or a blueprint of an

object of same type
– Is the fundamental structure in object-oriented programming

• What makes up a class?
– Fields (they are also called properties or attributes) - specify the data

types defined by the class
– Methods - specify the behavior

8

Relationship between Class and Objects

• Object (or Object instance)
– An object is an instance of a class
– The property (field) values of an object instance is different from the

ones of other object instances of a same class
– Object instances of a same class share the same behavior

(methods), however

9

Example: Classes and Objects

10

Example: Defining “Car” class
public class Car {

 // Fields - different values for different objects
 private String plateNumber;
 private String color;
 private String manufacturer;
 private int speed;

 // Methods - common for all objects created from this class
 public void accelerate(){
 // Some code
 }

 public void turn(){
 // Some code
 }

 public void brake(){
 // Some code
 }
}

11

Classes and Reusability

• Classes provide the benefit of reusability
• Programmers create many object instances from the same

class

12

What is Encapsulation?

• The scheme of hiding implementation details of a class
– The user of the class does not need to know the implementation

details of a class
– The user can call brake() method of the Car class without

knowing how the brake() method is actually implemented
• The implementation can change without affecting the user of

the class

13

 Creation of Object Creation of Object
Instances with “new” Instances with “new”

keywordkeyword

14

How do you create Object Instance?

• To create an object instance of a class, use the new keyword
• For example, if you want to create an object instance of the

class String, you would write the following code,
String str2 = new String(“Hello world!”);

or
String str2 = "Hello world!";

• String class is a special (and only) class you can create an
instance without using new keyword as shown above

15

Constructor Method of a Class

• When you create an object using new keyword, the class'
constructor method gets invoked automatically
– Constructor method of a class typically contains some

initialization logic
• Syntax of constructor method

– The constructor method has the same name as the class
– The constructor method does not have a return type
– There could be multiple constructor methods (with different set

of arguments – it is called constructor overloading)
– If there is no constructor method, a no-arg constructor

(sometimes called default constructor) gets inserted into the
class by the compiler

16

Example: Constructor Method of Car Class

public class Car {

 // Fields - different values for different objects
 private String plateNumber;
 private String color;
 private String manufacturer;
 private int speed;

 // Constructor method
 public Car() {
 // Some initialization can be done here
 }

 // Methods - common for all objects created from this class
 public void accelerate(){
 // Some code
 }

 public void turn(){
 // Some code
 }

 public void brake(){
 // Some code
 }
}

17

Lab:Lab:

Exercise 1: Create an Object InstanceExercise 1: Create an Object Instance
using “new” keywordusing “new” keyword

1011_javase_class_part1.zip1011_javase_class_part1.zip

18

 MethodsMethods
(Instance methods &(Instance methods &

Static methods)Static methods)

19

What is a Method?

• A method is a block of code (set of statements) that can be
called to perform some specific task

• The following are characteristics of a method
– It can return one or no values
– It may accept as many arguments it needs or no argument at all

(Arguments are also called parameters).

20

Why Use Methods?

• Methods contain behavior of a class (business logic)
– Taking a problem and breaking it into small, manageable tasks

is critical to writing large programs.
– We can do this in Java by a creating methods to perform these

manageable tasks

21

There are Two Types of Methods

• Instance (non-static) methods
– Can be called only through an object instance - so it can be

called only after object instance is created
– Calling syntax

● [NameOfObject].[methodName]
– More common than static methods

• Static methods
– Object instance does not have to be created
– Can be called through a class

● [ClassName].[methodName]

22

Calling Instance (non-static) Methods

• To illustrate how to call methods, let's use the String class
as an example

• You can use the Java API documentation to see all methods of
the String class
– http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

• A method with “static” modifier is a static method while a
method without “static” modifier is an instance (non-static)
method

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

23

Calling Instance (non-static) Methods

• To call an instance method, we write the following,
 nameOfObject.nameOfMethod(arguments);

// Create object instance of String class

String strInstance1 = new String("I am object

 instance of a String class");

// Call charAt instance method of String class

char x = strInstance1.charAt(2);

24

Instance Methods

• Let's take two sample instance methods found in the String
class

25

Example: Calling Instance Methods

// Create object instance of String class
String str1 = new String(“HELLO”);

// Call instance method charAt().
// This will return the character H
// and store it to variable x.
char x = str1.charAt(0);

// Create another object instance of String class
String str2 = new String(“hello”);

// Call instance method equalsIgnoreCase().
// This will return a boolean value true.
boolean result = str1.equalsIgnoreCase(str2);

26

Static Methods

• Static method definition
– Static methods are defined with the keyword static

• Static method invocation

– Static methods are invoked without creating an object instance
(means without invoking the new keyword)

– You call static method from a Class not object instance

Classname.staticMethodName(arguments);

27

Static Method Invocation Example

// The parseInt() is a static method of the Integer class
// It converts the String 10, to an integer
int i = Integer.parseInt(“10”);

// The toHexString() is a static method of the Integer class.
// It returns a String representation of the integer
// argument as an unsigned integer base 16
String hexEquivalent = Integer.toHexString(10);

28

Lab:Lab:

Exercise 2: Static method & Instance MethodExercise 2: Static method & Instance Method
1011_javase_class.zip1011_javase_class.zip

29

 Variables (Fields,Variables (Fields,
Properties, Properties,
Attributes)Attributes)

30

Three Types of Variables

• There are three types of variables
– Static variable (Also called as Class variable)
– Non-static variable (Also called as Instance variable)
– Local variable (Also called as automatic variable)

• The type of variable is determined by where the variable is
declared

• The type of variable dictates where and how it can be used –
this is called the scope of variable

31

Example: Types of Variables
public class Car {

 // Class (Static) variable
 private static String manufacturer = "Ford";

 // Instance (non-Static) variable
 private String plateNumber;
 private String color;

 public Car() {
 }

 public void accelerate(){
 // Local (automatic) variable
 int x = 10;
 }

}

32

Static Variable (Static Field)

• Declared inside a class body but outside of any method bodies
(same as Instance variable)

• Prepended with the static modifier (different from Instance
variable)

• Exists per each class
– Come to existence when the class is loaded

• Shared by all object instances of the class

33

Instance Variable (Instance Field)

• Declared inside a class body but outside of any method bodies
(like static variable)

• Exists per each object instance
– Different object instances typically have different values for these

instance variables
– Come to existence when an object instance is created

34

Local Variable

• Declared within a method body
• Visible only within the method body

– Come to existence only when the method gets executed

35

 Scope of VariablesScope of Variables

36

Scope of a Variable

• The scope of a variable
– Determines where in the program the variable is accessible.
– Determines the lifetime of a variable or how long the variable

can exist in memory

• The scope is determined by where the variable declaration is
placed in the program
– Just think of the scope as anything between the curly braces

{...}, which represents a code block
– More precisely, a variable's scope is inside the code block

where it is declared, starting from the point where it is declared

37

Example 1: Scope of Variables

38

Example 1: Explanation

• The code we have in the previous slide represents five scopes
indicated by the lines and the letters representing the scope.

• Given the variables i,j,k,m and n, and the five scopes A,B,C,D
and E, we have the following scopes for each variable:
– The scope of variable i is A.
– The scope of variable j is B.
– The scope of variable k is C.
– The scope of variable m is D.
– The scope of variable n is E.

39

Example 2: Scope of Variables

40

Example 2: Explanation

• In the main method, the scopes of the variables are,
– ages[] - scope A
– i in B - scope B
– i in C – scope C

• In the test method, the scopes of the variables are,
– arr[] - scope D
– i in E - scope E

41

Scope of a Variable

• When declaring variables, only one variable with a given
identifier or name can be declared in a scope.

• That means that if you have the following declaration,

{
int test = 10;
int test = 20;

}

This will cause a compile error since names have to be unique
within a block

42

Scope of a Variable

• However, you can have two variables of the same name, if they
are declared in different blocks. For example,

public class Main {
 static int test = 10;

 public static void main(String[] args) {

 System.out.println(test); // prints 10

 // test variable is defined in a new block
 {
 int test = 20;
 System.out.println(test);// prints 20
 }

 System.out.println(test); // prints 10
 }
}

43

Scope of Variables

• Local (automatic) variable
– Only valid from the line they are declared on until the closing

curly brace of the method or code block within which they are
declared

– Most limited scope

• Instance variable
– Valid as long as the object instance is alive

• Class (static) variable
– In scope from the point the class is loaded into the JVM until the

the class is unloaded
– Class are loaded into the JVM the first time the class is

referenced

44

Lab:Lab:

Exercise 3: Scope of VariablesExercise 3: Scope of Variables
1011_javase_class.zip1011_javase_class.zip

45

Code with Passion!Code with Passion!
JPassion.comJPassion.com

45

	Slide 1
	Objectives
	Slide 3
	Start Lesson Here
	Slide 5
	Slide 6
	Classes & Objects
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	class instantiation
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	methods
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	static methods
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	variable scope
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

