
[bookmark: top]

[image: Learn with Passion!][image: Learn with Passion!]	

	
	

JPassion CoursesStart here	

	

Free Courses	

	

Instructor- Sang Shin	

	

Sign-up	

	

Blog	

	

Contact Us	

 JavaScript and JQuery

JavaScript Basics

Topics

	What is and Why JavaScript?
	How and Where do you place JavaScript code?
	JavaScript language
	Variables, statements, code blocks, control flow

	JavaScript functions
	Defining functions -3 different ways
	Calling functions
	Function as a method

	JavaScript data types
	JavaScript objects
	JavaScript object is a Hash
	3 different ways of creating a JavaScript object

What is and Why JavaScript?

What is JavaScript?

	Scripting language
	Scripting language is a lightweight programming language

	Used to add interactivity to HTML pages
	JavaScript code could be embedded directly into HTML pages or in a separate file, which is referenced from the HTML page

	JavaScript is traditionally used as client-only (within HTML page) language – now slowly gaining some traction as a standalone and server side language as well
	Example: Node.js
	Our focus in this codecamp is on the client side only

What can JavaScript do?

	JavaScript gives HTML page writers a programming tool for adding behavior
	JavaScript can put dynamic text into an HTML page
	JavaScript can react to events
	JavaScript can read and write HTML elements
	JavaScript can be used to validate input data
	JavaScript can be used to detect the browser type & version
	JavaScript can be used to detect whether a browser support a feature or not
	JavaScript can be used to animate HTML elements

Lab: Exercise 0: Install Chrome Browser & Brackets (or VSC) 4262_javascript_basics.zip

How and Where Do You Place JavaScript Code (in an HTML page)?

How to put JavaScript code into an HTML page?

//Use the <script> tag along with type attribute
// Scripts can be in the either <head> section and/or <body> section
<html>
<head>
<script type="text/javascript">
...
</script>
</head>
<body>
<script type="text/javascript">
...
</script>
</body>
</html>

Referencing External JavaScript File

	JavaScript code can in a separate script file
	Script file can be provided locally or remotely
	Accessible via src attribute

<html>
<head>
<script language="JavaScript"
 type="text/javascript"
 src="http://somesite/myOwnJavaScript.js"> // Remotely located
</script>
<script language="JavaScript"
 type="text/javascript"
 src="/myOwnSubdirectory/myOwn2ndJavaScript.js"> //Locally located
</script>

Lab: Exercise 1: JavaScript Code 4262_javascript_basics.zip

JavaScript Language: Variables

	You create a variable with or without the var keyword (scope will be different, however – explained in the following slide)

var strname = <some value>;
strname = <some value>;

	Variable names are case sensitive
	yes and Yes are two different variables

	Variable names must begin with a letter, the $ character, or the underscore character
	myname, my_name, $myname

	If you declare a variable without assigning any value to it, its type is undefined
	var myvar; // undefined

JavaScript Variable Scope

	In JavaScript, the variable scope is aligned with a function
	Not with a block as in the case of C or Java

	Global scope variables (or global variables)
	If you declare a variable outside a function, it is in global scope
	All functions on the same page can access any global variables
	The usage of global variables are discouraged because it is prone to be overridden accidentally

	Local scope variables (or local variables)
	When you declare a variable with “var” and within a function, the variable can only be accessed within that function - local scope

Usage of “var” keyword & Variable Scope

	In the global scope, there's no difference between “var x” and “x” – they are both in global scope
	In the local scope – meaning inside a function, then "var" will create a local variable

// These are both global variables
var foo = 1;
bar = 2;
function() {
 var foo = 1; // Local
 bar = 2; // Global
 // Execute an anonymous function
 (function() {
 var wibble = 1; // Local
 foo = 2; // Inherits from scope above (creating a closure)
 moo = 3; // Global
 }())
}

Lab: Exercise 2: Variables 4262_javascript_basics.zip

JavaScript Language: Statements & Code Blocks

JavaScript Statements

	JavaScript statements are "instructions" to be "executed"
	JavaScript statements are often called JavaScript code
	Semicolons separate JavaScript statements (it is optional, however)

var x = 20;
var y = 30;
document.write("<h1>This is a heading</h1>");
document.write("<p>This is a paragraph.</p>");
document.write("<p>This is another paragraph.</p>");
// The alert message below gets executed when the page is loaded
alert("Hello Boston! This message gets displayed when a page is loaded.");
function displaymessage() {
 alert("Hello World! ");
}

JavaScript Code Blocks

	JavaScript statements can be grouped together in a code block, inside curly brackets {...}
	The most common form of code block is a function

function displaymessage() {
 var x = 20;
 var y = 30;
 alert("Result = " + (x+y));
}

JavaScript Language: Control flow

	Conditional statement
	if, if.. else, switch

	Loop
	for loop, while loop, do-while loop

	try...catch
	throw

Lab: Exercise 3: Control flow 4262_javascript_basics.zip

JavaScript Functions: Defining Functions

What is a Function?

	A function is a JavaScript procedure—a set of statements that performs a task or calculates a value
	A function can take 0 or more named parameters
	The function body can contain as many statements as you like, and can declare its own variables which are local to that function
	Variables with “var” keyword within the function are local scope variables
	Variables without “var” keyword within the function are global scope variables

	The return statement can be used to return a value at any time, terminating the function

Function Definitions (Declarations)

	A function can be defined (also called “declared”) in several ways

	Through function statement
	Through function expression
	Through function constructor (rarely used)

	When a function is declared, internally a function object is created and that function object is assigned to a property of the owning object
	The owning object of the top-level function is “window” for browser

	 Note that function definition (declaration) is just that – it is NOT function invocation (function execution)
	In other words, a function object gets created but it is not executed

#1: Through function Statement

	A function statement is made of function keyword, followed by
	The optional name of the function
	A list of arguments to the function
	The JavaScript statements enclosed in curly braces, { }

	A function statement is a genuine JavaScript statement
	Execution of the function statement creates a function object

	A function object, once created, is assigned to a property of owner object – the property name is the same as function name

// Declare a named function as a function statement.
// “myNamedFunction” property of owner object points to
// newly created function object.
function myNamedFunction(arg1, arg2) {
 console.log(arg1, arg2);
}

#2: Through function Expression

	A function can be defined as a function expression
	The function has to be assigned to a variable or can be passed as an argument in this case

	A function expression can be anonymous (name is optional)

// Create a function object via anonymous function expression and
// assign it to myFunction1 variable
var myFunction1 = function(something){
 console.log(something);
}

	A function object is created and then assigned to the property of the owning object – the property name is the variable name, myFunction1 in the example above

#3: Through function Constructor

	The Function() constructor expects any number of string arguments
	The last argument is the body of the function - it can contain arbitrary JavaScript statements, separated from each other by semicolons

// Create a function through Function Constructor
var my_func = new Function("x", "y", "return x+y;");
/* This is the same as above
function my_func(x, y){
 return x+y;
}
*/
my_func(10,20);

JavaScript Functions: A Function as a Method

A Function as a Method

	A property of a JavaScript object whose value is a function object is called a method
// Declare a function
function functionDefinedSomewhere(something) {
 console.log(something)
}
// Create a JavaScript object
var myPerson = {
 firstname : "John",
 lastname : "Doe",
 age : 50,
// tellYourage,tellSomething and tellWhatever methods
 tellYourage : function() { // Anonymous function without argument
 console.log("The age is " + this.age);
 },
 tellSomething : function(something) { // Anonymous function with an argument
 console.log(something);
 },
 tellWhatever : functionDefinedSomewhere // Named function
}

JavaScript Functions: Function Invocation (Function execution)

Function Invocation (Function Execution)

	Defining a function does not invoke(execute, call) it
	Defining the function simply creates a function object and assigns it to a property of owning object
	In order to execute the function (perform some task), you have to explicitly invoke it

	A function gets executed only by an invocation (or by an event if the function is configured as event handler)
	In order to prevent the browser from executing a script as soon as the page is loaded, you want to write your script as a function

	You may invoke a function from anywhere within a page (or even from other pages if the function is embedded in an external .js file)

Function Invocation (Function Execution)

<script type="text/javascript">

// Declare/define a named function as a function statement
function myNamedFunction(something) {
//function definition
 console.log(something);
}
// Declare/define an anonymous function expression and assign it to
// myFunction1 variable
var myFunction1 = function(something){
//function definition
 console.log(something);
}
var myFunction2 = myNamedFunction;
// Invoke/execute/call functions
//function invocation
myNamedFunction("Life is good!");
myFunction1("Hello!");
myFunction2("Goodbye!");
</script>

Function Invocation via Event

<html>
<head>
<title/>
<script type="text/javascript">
 // If alert("Hello world!!") below had not been written within a
 // function, it would have been executed as soon as the page gets loaded.
 function displaymessage() {
 alert("Hello World!")
 }
</script>
</head>
<body>
<form>
<!-- function invocation via event -->
<input type="button" value="Click me!"
 onclick="displaymessage()" >
</form>
</body>
</html>

Lab: Exercise 4: Defining and Invoking functions 4262_javascript_basics.zip

JavaScript Data Types

	JavaScript is a loosely typed or dynamic type language
	You don't have to declare a type of a variable
	The type gets determined automatically when the program gets executed
	You can use a same variable as different types
	var foo = 35; // foo is Number type
	var foo = “passion”; // foo is String type
	var foo = true; // foo is Boolean type

	There are 7 data types
	6 data types are primitive types
	Boolean, Null, Undefined, Number, String, Symbol
	Primitive types define immutable values (values, which are incapable of being changed) - these immutable values of the primitive types are valled as "primitive values"

	The remaining data type is Object type

Primitive types

	Boolean type
	Can have two values: true or false

	Null type
	Has exactly one value: null

	Undefined type
	A variable that has not been assigned a value has the valued undefined

	Number type
	String type
	Symbol type (introduced in ECMAScript 6)
	Unique and immutable

Object Type

	A JavaScript object has properties and methods
	 Example: String JavaScript object has length property and toUpperCase() method

<script type="text/javascript">
var txt="Hello World!"
document.write(txt.length)
document.write(txt.toUpperCase())
</script>

Lab: Exercise 5: Object types 4262_javascript_basics.zip

JavaScript Objects: Hash (Associative Array)

JavaScript Object is a Hash

	A JavaScript object is essentially a hash (an associative array) with property-name/value pairs
	Property name has to be unique
	It is like a Map in Java
	There is no exception - even a function object is a hash

{
 name1: value1,
 name2: value2,
 name3: value3,

 nameN: valueN
}

How to Refer Property Names

	The following two lines of code are semantically equivalent

myObject.myfield = “something”;
myObject['myfield'] = “something”;

	[..] notation can take variable

var x = “test”;
myObject[x] = “Passion!”;
console.log(myPerson.test); // Passion!

Value of a Property Can Be function object

var myPerson = {
 firstname: "John",
 lastname: "Doe",
 age: 50,
 tellYourage: function () { // Anonymous function without argument
 alert(“The age is ” + this.age);
 },

 tellSomething: function(something) { // Anonymous function with an argument

//The Value of tellSomething function property is a function object
 alert(something);
 },
 tellWhatever: functionDefinedSomewhere // Named function
}
function functionDefinedSomewhere(something){
 alert(something)
}
myPerson.tellYourage();
myPerson.tellSomething(“Life is good!”);
myPerson.tellWhatever(“Hello”);

Value can be another Java Script Object

var myVar = {
 count: 20,
 person: myPerson // myPerson was defined in previous slide
 }
 myVar.person.tellSomething("Life is REALLY REALLY good!");

JavaScript Object vs. Java Object

	Similarities
	Both has properties and methods

	Differences
	JavaScript object can be dynamically typed (while in Java, object is statically typed)
	In JavaScript, properties and methods can be added dynamically to a JavaScript object during runtime (while in Java, properties and methods need to be defined at compile time)
	In JavaScript, a method is defined by assigning a function object to a property

JavaScript Objects; 3 Different Ways of Creating JavaScript Objects

3 Ways of Creating Your Own JavaScript Objects

	Create an object instance as Hash Literal (You have already seen this) – preferred
	Define a function as a Constructor first and then create an instance of an object from it
	Create a direct instance of an object by using built-in constructor of the built-in “Object” object

Option #1: Creating JavaScript Object as a Hash Literal

// Create JavaScript object as a Hash Literal then assign to “personObj”
var personObj = {
 firstname: "John",
 lastname: "Doe",
 age: 50,
 tellYourage: function () {
 alert(“The age is ” + this.age);
 }
 tellSomething: function(something) {
 alert(something);
 }
}
// Call methods of “personObj” JavaScript object
personObj.tellYourage();
personObj.tellSomething(“Life is good!”);

Option #2: Create from a Constructor Function (Template)

	A function defines the structure of a JavaScript object – it plays a role of a template

// Define a Constructor function
function Person(firstname,lastname,age,eyecolor){
 this.firstname=firstname;
 this.lastname=lastname;
 this.age=age;
 this.tellYourage=function(){
 alert(“This age is ” + this.age);
 }
}
// Continued in the next slide

Option #2: Create from a Constructor Function (Continued)

Once you have a Constructor function (as you saw in the previous slide), you can create new instances of JavaScript object using new keyword

myFather=new Person("John","Doe",50,"blue");
myMother=new Person("Sally","Rally",48,"green");

	You can then add new properties and functions to new objects

myFather.newField = “some data”;
myFather.myfunction = function() {
 alert(this["fullName"] + ” is ” + this.age);
}

Option #3: Create a Direct Instance of a JavaScript Object from “Object” object

	By invoking the built-in constructor for the Object object

// Initially empty with no properties or methods
personObj=new Object(); // same as personObj = { }

	Add properties to it

personObj.firstname="John";
personObj.age=50;

	Add an anonymous function to the personObj

personObj.tellYourage=function(){
 alert(“This age is ” + this.age);
}
// You can call then tellYourage function as following
personObj.tellYourage();

 Option #3: Create a Direct Instance of a JavaScript Object from “Object” (Continued)

• Add a pre-defined function

function tellYourage(){
 alert(“The age is” + this.age);
}
personObj.tellYourage=tellYourage;

	By the way, note that the following two lines of code are doing completely different things

// Set property with a function
personObj.tellYourage=tellYourage;
// Set property with returned value of the function
personObj.tellYourage=tellYourage();

Lab: Exercise 6: Create objects 4262_javascript_basics.zip

Download course content

Download PDF

Download Lab Zip

JavaScript, jQuery, Ajax Programming (with Passion!)

Download PDF and Lab Zip files

Course Contents

[image:]
[image:]

	JavaScript Basics - PDF, Lab, Recording (61 minutes) [Download FREE]
	JavaScript Advanced - PDF, Lab, Recording (65 minutes) [Download FREE]
	JavaScript Inheritance - PDF, Lab, Recording (29 minutes) [Download FREE]
	JavaScript DOM APIs- PDF, Lab, Recording (41 minutes) [Download FREE]
	Tools: JSLint & JSHint - PDF, Lab, Recording (22 minutes) [Download FREE]
	Tools: Chrome DevTools - PDF, Lab, Recording (49 minutes) [Download FREE]
	Ajax Basics - PDF, Lab, Recording (46 minutes)
	JSON - PDF, Lab, Recording (18 minutes)
	jQuery Basics I- PDF, Lab, Recording (75 minutes) Recording part 2 (24 minutes)
	jQuery Basics II - PDF, Lab, Recording (35 minutes)
	jQuery Plugin Basics - PDF, Lab, Recording (30 minutes)
	jQuery Plugin Examples - PDF, Lab, Recording (18 minutes)
	jQuery UI Basics- PDF, Lab, Recording (21 minutes)
	jQuery UI Widgets- PDF, Lab, Recording (51 minutes)
	jQuery UI Theming- PDF, Lab, Recording (32 minutes)
	RequireJS- PDF, Lab, Recording (63 minutes)
	Cross Domain Ajax and JSONP - PDF, Lab, Recording (30 minutes)
	CoffeeScript- PDF, Lab

Topics that are no longer part of this course

	ProtoType Library - PDF, Lab, Recording
	Dojo Toolkit Basics I (dojo) - PDF, Lab, Recording
	Dojo Toolkit Basics II (dojo) - PDF, Lab, Recording
	Dojo Toolkit Ajax - PDF, Lab, Recording
	Dojo Toolkit Widgets (dijit) - PDF, Lab, Recording
	Dojo Toolkit Building Custom Widgets - PDF, Lab, Recording (38 min)
	Dojo Toolkit Advanced (module, oop)- PDF, Lab, Recording (58 min)
	Comet (Ajax Push, Reverse Ajax)- PDF, Lab, Recording
	JavaScript Frameworks and Toolkits - PDF, Lab, Recording

Topics that will be added in the future

	JavaScript Profiling
	JavaScript Testing
	JavaScript Best Practices

JavaScript Inheritance

Topics

	Inheritance through Prototype
	Function constructor and Prototype

Inheritance through Prototype

	Prototype-based Languages
	Two different ways for supporting inheritance in programming languages
	Scheme #1: Through traditional class hierarchy (Java, C, C++, ...)
	Scheme #2: Through prototype (JavaScript)

	JavaScript is a prototype-based language
	In a prototype-based language, there is no concept of a "class"
	 Inheritance is provided through prototype, however

	In prototype-based language, every object has “prototype” property (the actual name of the “prototype” property is __proto__) that points to “prototype” object
	Since the prototype object itself is a JavaScript object, it has its own “prototype” property, which in turn forms “prototype chain”, until it reaches “Object” object, which has null as its prototype

Download course content

Download PDF

Download Lab Zip

JavaScript Advanced

Topics

	JavaScript functions as first-class objects
	Self-invoking function
	Function scope
	What is Closure? (Closure examples)
	Why use Closure? (Closure usage examples)
	Global object, non-global object, and “this”

JavaScript Functions as First-class Objects

A function is a first-class JavaScript Object (like String or Number object)

	Functions are a bit like Java methods (like in Java)
	They contain statements for performing some tasks
	They have arguments and return values

	A function is a first-class object in JavaScript (unlike in Java 7)
	Can be considered as a descendant of Object object
	Can do everything a regular JavaScript object can do such as having properties and their values
	Function objects can have other function objects as methods

	A function behaves like a first-class object (unlike in Java 7)
	It can be saved into a variable (like String object)
	It can be passed as an argument to another function
	It can be returned as a object

Download course content

Download PDF

Download Lab Zip

JavaScript DOM APIs

Topics

	HTML DOM objects
	Window object
	Document object
	DOM APIs
	DOM Event handling
	Form handling
	Event object

HTML DOM Objects

	The HTML DOM defines a standard set of objects for HTML, and a standard way to access and manipulate HTML elements
	All HTML elements, along with their containing text and attributes, can be accessed through the DOM
	The contents can be modified or deleted, and new elements can be created.

	The HTML DOM is platform and language independent
	It can be used by any programming language like Java, JavaScript, and VBScript

Download course content

Download PDF

Download Lab Zip

	

			Tools: JSLint & JSHint

	

			Tools: Chrome DevTools

	

			Ajax Basics

	

			JSON

	

I have attended the 5-day Java Programming code camp and it has been very helpful. The course content is very detailed including lot of examples and homework for each topic. Sang is very knowledgeable, also very patient in making sure everyone understands the content covered. He goes well and beyond the expectations. After taking the course, I feel confident now to take the Oracle Java Programmer certification exam. I am looking forward for 'Advanced Java Programming' code camp in future. I would definitely recommend jpassion to anyone.

Maheswar V

I am participated in the Java Programming - Learn Java for the first time (beginners) Code Camp and I have to mention that it is very well organized, contains very interesting exercises and home-works, and the way in which Mr. Sang explains everything is very great and effective specially by having the possibility to ask any question do you want. I am very eager to attend another Code Camps and also to read and learn from all these great materials. I am suggesting this website for everyone, beginners can consider it as an effective station to start from, and the experienced people can use it to review and refresh their knowledge..

Wahi N.

Java Live code camp was really an amazing experience. Instructor is there to answer you questions, it is something not to be missed at any cost, especially the way it has gone through is marvelous.

Chan

If you want to understand Java thoroughly, take this course. Clear explanations and lots of meaningful examples.

Vonnie K.

This is the best resource for learning Java programming. The material is thorough and well-detailed, yet concise. The Web Services and SOA Programming bootcamp was a huge springboard in my career as a middleware developer and in my personal persuits in Java development.

J. C., Middleware/Java Developer, Deloitte Consulting

I had attended the 4 day training program on Java. The course agenda was clear and the presentations were easy to understand even for a novice in programming. Concepts were clearly explained with adequate hands on exercises. Above all as the name suggests "jpassion",Sang Shin teaches with so much passion, even if we could imbibe a quarter of it, we would be good programmers. Looking forward for many more.

Rajesh.V

Bangalore

This was a superb class, fully stocked with examples and a good selection of source code explanation. High recommended.

Joel Kass

Thank you for the wonderful class. You explained everything in detail and was very easy to understand.

Karthika Mani

Thank you! Though the clas was a little fast I felt it was still very good and informative.This is a lot of data in a short session and your presentation is excellent.

Nabil Hussein

Its because of your site today i am so good in java

Mudassar H.

JPassion code camps - Fastest, easiest way to build real Java development skills. Perfect for those short on time, money to get what you need at the pace you need. Missing class is not an issue since all material including lectures is available for download. If you submit the homework exercises, you get a course certificate.

Jim M.

I enjoy the books by Cay Horstmann such as core Java (volume 1 and 2) and Big Java.. I also like the Udemy classes on Java and Coursera and edX.. However, jPassion gives the direct live interaction with Professor Sang Shin that these other formats of learning don't do. In those other formats you can post a question but they may or may not answer it, and you have to wait for the answer. In jPassion Sang is very open to answering all types of questions even unrelated to the exact topic being discussed!! His material is quite in depth even when it's called Introduction or Beginner etc. It's also a great motivating factor to hear him live and try to wake up early and listen live. Thanks for these great teachings Sang..

John S.

This course was incredible value – and very well done. I find that I need a starter class to begin a new language and the ability to learn from - and interact with – a live Instructor is marvelous.

Martin B.

Great codecamp! It helped to understand some of the complex Java programming concepts in depth by interacting instructor that breaks down the complexity and makes it easier to understand.

Natalya P.

Very good course. Sang shin (the instructor) makes it very hands on and at the same time is willing to answer all the conceptual questions thus making it overall a very interactive and practical experience

Gopal

	Testimonial1
	Testimonial2
	Testimonial3
	Testimonial4
	Testimonial5
	Testimonial6
	Testimonial7
	Testimonial8
	Testimonial9
	Testimonial10
	Testimonial11
	Testimonial12
	Testimonial13
	Testimonial14
	Testimonial15

Jpassion Courses

	
	

Java Programming	

	

Spring Framework Programming	

	

Advanced Java SE Programming	

	

Java 8 Lambda Programming	

	

Java Design Patterns	

	

Java Web Programming Basics (Servlet/JSP)	

	

Java OO Programming	

	

Web Services Programming	

	

Java REST Programming	

	

JUnit, Mocking, TDD, Refactoring	

	

Java EE Programming	

	

Docker	

	

Spring REST Programming using JAX-RS	

	

JavaScript and JQuery	

	

JPA Programming 	

	

Java Development Tools	

	

MySQL Programming	

	

Groovy and Grails Programming 	

	

Hibernate Programming	

	

Angular 2 Programming	

	

Angular 1 Programming	

	

HTML5 Programming	

	

Android Programming 	

	

Java Performance 	

	

Ruby on Rails Programming	

	

Hadoop Programming	

Copyright © 2010-2022 www.jpassion.com All Rights Reserved[image:]
[image:]

	
	

CoursesStart here	

	

Instructor	

	

Blog	

	

Contact Us	

	

Terms & conditions	

	

DMCA CopyRights	

